Loading…
A convenient spectrophotometric test for screening skin-sensitizing chemicals using reactivity with glutathione in chemico
To initiate skin sensitization, haptens react with endogenous proteins. During this process, skin sensitizers react with small endogenous molecules containing thiol or amino groups. In this study, a simple spectrophotometric method to identify skin sensitizers in chemico was developed using the reac...
Saved in:
Published in: | Toxicological research (Seoul) 2024, 40(2), , pp.203-213 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | To initiate skin sensitization, haptens react with endogenous proteins. During this process, skin sensitizers react with small endogenous molecules containing thiol or amino groups. In this study, a simple spectrophotometric method to identify skin sensitizers
in chemico
was developed using the reactivity of glutathione (GSH) with test chemicals in a 96-well plate. To quantitate the remaining GSH following the reaction with a skin sensitizer, 5,5′-dithiobis-(2-nitrobenzoic acid) (DTNB) was employed. The optimized experimental conditions included the pH- and time-dependent stability of GSH, stability of derivatized products of GSH with optimal concentration and incubation time of DTNB, incubation time of GSH with the test chemicals, and molar ratios of GSH to the test chemicals. With the optimized conditions with both acetonitrile and DMSO as vehicles and incubation of GSH with test chemicals in 1:10 and 1:15 ratios for 24 h at 4 °C, 23 skin sensitizers and 23 non-sensitizers, based on the local lymph node assay, were tested to determine the predictive capacity of individual conditions. The best result showed a predictive capacity of 95.2% sensitivity, 91.3% specificity, and 93.2% accuracy, with 93.2% consistency in three trials, when 5.8% depletion was used as a cut-off value in 1:10 of GSH:test chemicals in DMSO. It would be an economic and useful screening tool for determining the skin sensitization potential of small molecules, because the present method employs simple endogenous GSH as an electron donor for sensitizers with a spectrophotometric detection system in 96-well plates, and because the method requires neither experimental animals nor cell cultures. |
---|---|
ISSN: | 1976-8257 2234-2753 |
DOI: | 10.1007/s43188-023-00218-9 |