Loading…

Dielectric properties and EMI shielding efficiency of polyaniline and ethylene 1-octene based semi-conducting composites

The preparation of polyaniline (PAni) was carried out by the oxidative emulsion polymerization of aniline and the semi-conducting composites were prepared by mixing it with a polyolefinic thermoplastic elastomer ethylene 1-octene copolymer (EN). Different electrical properties and electromagnetic in...

Full description

Saved in:
Bibliographic Details
Published in:Current applied physics 2009, 9(3), , pp.396-403
Main Authors: Bhadra, Sambhu, Singha, Nikhil K., Khastgir, Dipak
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The preparation of polyaniline (PAni) was carried out by the oxidative emulsion polymerization of aniline and the semi-conducting composites were prepared by mixing it with a polyolefinic thermoplastic elastomer ethylene 1-octene copolymer (EN). Different electrical properties and electromagnetic interference shielding efficiency (EMI SE) of these composites were measured. The results revealed that the incorporation of PAni in EN increases the conductivity, dielectric constant, dielectric loss and EMI SE. These composites exhibit pressure dependent dielectric properties and may act as pressure sensor. There are increase in AC conductivity and decrease in dielectric constant with the increase in applied pressure on composites. A model correlation between EMI SE and AC conductivity at same frequency for the composites having maximum 40% of PAni was obtained through extrapolation and linear regression analysis, which shows that EMI SE has linear relationship with AC conductivity. Because of their semi-conductive behavior these composites can find application as antistatic materials and electromagnetic interference (EMI) shielding material.
ISSN:1567-1739
1878-1675
DOI:10.1016/j.cap.2008.03.009