Loading…

Required Active Earth Pressure for 3D ERSs Following a Modified Mohr-Coulomb Strength Criterion

Exploiting the linear Mohr-Coulomb strength criterion, the stability computation for earth retaining structures (ERSs) by estimating the active earth pressure has been mainly conducted by setting the plane strain 2D. In this research, the modified MC strength criterion with reduced tensile strength...

Full description

Saved in:
Bibliographic Details
Published in:KSCE journal of civil engineering 2024, 28(7), , pp.2639-2646
Main Authors: Xu, Jingshu, Wang, Xinrui, Li, Liyun, Du, Xiuli
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c331t-cef15d3914a45de8b7ba2e0c5d75a66084446fc801fbab06b4986a868de8ae9c3
container_end_page 2646
container_issue 7
container_start_page 2639
container_title KSCE journal of civil engineering
container_volume 28
creator Xu, Jingshu
Wang, Xinrui
Li, Liyun
Du, Xiuli
description Exploiting the linear Mohr-Coulomb strength criterion, the stability computation for earth retaining structures (ERSs) by estimating the active earth pressure has been mainly conducted by setting the plane strain 2D. In this research, the modified MC strength criterion with reduced tensile strength is put into use for the stability analysis of ERSs employing a 3D multi-cone collapse analysis mechanism. After computing the coefficient of active earth pressure, the optimal results are captured from a combination of the genetic algorithm and particle swarm optimization. Research findings are validated through comparison, while the influences of soil tensile strength threshold and 3D geometrical features over the stability measures and critical failure modes of ERSs are explored by parametric assessment. It is revealed in this work that the linear MC strength criterion derives conservative estimates of the active earth pressure. The tensile strength threshold of soil has a pronounced effect on both the objective solutions and failure shapes, especially for the ERSs under a greater dimensionless cohesion c/γH . This work provides a straightforward approach to perform a 3D stability analysis of ERSs considering a tensile strength cutoff, without a pre-assumed distribution of the rupture angle.
doi_str_mv 10.1007/s12205-024-0356-5
format article
fullrecord <record><control><sourceid>proquest_nrf_k</sourceid><recordid>TN_cdi_nrf_kci_oai_kci_go_kr_ARTI_10525017</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3069396487</sourcerecordid><originalsourceid>FETCH-LOGICAL-c331t-cef15d3914a45de8b7ba2e0c5d75a66084446fc801fbab06b4986a868de8ae9c3</originalsourceid><addsrcrecordid>eNqFkctKAzEUhgdRsGgfwF3AnRDNZZLJLEutF7AobV2HzEymTS-TejKj-PamjuBKzOZk8X1_DvmT5IKSa0pIdhMoY0RgwlJMuJBYHCUDmmcSc0XUcbwzJnGWK3WaDENYk3g4yxQXg0TP7FvnwFZoVLbu3aKJgXaFXsCG0IFFtQfEb9FkNg_ozm-3_sM1S2TQ1FeudlGb-hXgse-2flegeQu2WUZ_DK614HxznpzUZhvs8GeeJa93k8X4AT893z-OR0-45Jy2uLQ1FRXPaWpSUVlVZIVhlpSiyoSRkqg0TWVdKkLrwhREFmmupFFSRdbYvORnyVWf20CtN6XT3rjvufR6A3o0WzxqSgQThGYRvuzhPfi3zoZWr30HTdxPcyJzIeLfkP8onstUHbJoT5XgQwBb6z24nYHP-Jw-tKP7dnRsRx_a0SI6rHdCZJulhd_kv6Uv6WePnQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3069396487</pqid></control><display><type>article</type><title>Required Active Earth Pressure for 3D ERSs Following a Modified Mohr-Coulomb Strength Criterion</title><source>Springer Nature</source><creator>Xu, Jingshu ; Wang, Xinrui ; Li, Liyun ; Du, Xiuli</creator><creatorcontrib>Xu, Jingshu ; Wang, Xinrui ; Li, Liyun ; Du, Xiuli</creatorcontrib><description>Exploiting the linear Mohr-Coulomb strength criterion, the stability computation for earth retaining structures (ERSs) by estimating the active earth pressure has been mainly conducted by setting the plane strain 2D. In this research, the modified MC strength criterion with reduced tensile strength is put into use for the stability analysis of ERSs employing a 3D multi-cone collapse analysis mechanism. After computing the coefficient of active earth pressure, the optimal results are captured from a combination of the genetic algorithm and particle swarm optimization. Research findings are validated through comparison, while the influences of soil tensile strength threshold and 3D geometrical features over the stability measures and critical failure modes of ERSs are explored by parametric assessment. It is revealed in this work that the linear MC strength criterion derives conservative estimates of the active earth pressure. The tensile strength threshold of soil has a pronounced effect on both the objective solutions and failure shapes, especially for the ERSs under a greater dimensionless cohesion c/γH . This work provides a straightforward approach to perform a 3D stability analysis of ERSs considering a tensile strength cutoff, without a pre-assumed distribution of the rupture angle.</description><identifier>ISSN: 1226-7988</identifier><identifier>EISSN: 1976-3808</identifier><identifier>DOI: 10.1007/s12205-024-0356-5</identifier><language>eng</language><publisher>Seoul: Korean Society of Civil Engineers</publisher><subject>Civil Engineering ; Computation ; Earth ; Earth pressure ; Engineering ; Failure modes ; Genetic algorithms ; Geotechnical Engineering ; Geotechnical Engineering &amp; Applied Earth Sciences ; Industrial Pollution Prevention ; Mohr-Coulomb theory ; Particle swarm optimization ; Plane strain ; Pressure ; Soil strength ; Stability ; Stability analysis ; Stability criteria ; Tensile strength ; 토목공학</subject><ispartof>KSCE Journal of Civil Engineering, 2024, 28(7), , pp.2639-2646</ispartof><rights>Korean Society of Civil Engineers 2024</rights><rights>Korean Society of Civil Engineers 2024.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c331t-cef15d3914a45de8b7ba2e0c5d75a66084446fc801fbab06b4986a868de8ae9c3</cites><orcidid>0000-0003-3936-9203 ; 0000-0002-8400-2374</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003089316$$DAccess content in National Research Foundation of Korea (NRF)$$Hfree_for_read</backlink></links><search><creatorcontrib>Xu, Jingshu</creatorcontrib><creatorcontrib>Wang, Xinrui</creatorcontrib><creatorcontrib>Li, Liyun</creatorcontrib><creatorcontrib>Du, Xiuli</creatorcontrib><title>Required Active Earth Pressure for 3D ERSs Following a Modified Mohr-Coulomb Strength Criterion</title><title>KSCE journal of civil engineering</title><addtitle>KSCE J Civ Eng</addtitle><description>Exploiting the linear Mohr-Coulomb strength criterion, the stability computation for earth retaining structures (ERSs) by estimating the active earth pressure has been mainly conducted by setting the plane strain 2D. In this research, the modified MC strength criterion with reduced tensile strength is put into use for the stability analysis of ERSs employing a 3D multi-cone collapse analysis mechanism. After computing the coefficient of active earth pressure, the optimal results are captured from a combination of the genetic algorithm and particle swarm optimization. Research findings are validated through comparison, while the influences of soil tensile strength threshold and 3D geometrical features over the stability measures and critical failure modes of ERSs are explored by parametric assessment. It is revealed in this work that the linear MC strength criterion derives conservative estimates of the active earth pressure. The tensile strength threshold of soil has a pronounced effect on both the objective solutions and failure shapes, especially for the ERSs under a greater dimensionless cohesion c/γH . This work provides a straightforward approach to perform a 3D stability analysis of ERSs considering a tensile strength cutoff, without a pre-assumed distribution of the rupture angle.</description><subject>Civil Engineering</subject><subject>Computation</subject><subject>Earth</subject><subject>Earth pressure</subject><subject>Engineering</subject><subject>Failure modes</subject><subject>Genetic algorithms</subject><subject>Geotechnical Engineering</subject><subject>Geotechnical Engineering &amp; Applied Earth Sciences</subject><subject>Industrial Pollution Prevention</subject><subject>Mohr-Coulomb theory</subject><subject>Particle swarm optimization</subject><subject>Plane strain</subject><subject>Pressure</subject><subject>Soil strength</subject><subject>Stability</subject><subject>Stability analysis</subject><subject>Stability criteria</subject><subject>Tensile strength</subject><subject>토목공학</subject><issn>1226-7988</issn><issn>1976-3808</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkctKAzEUhgdRsGgfwF3AnRDNZZLJLEutF7AobV2HzEymTS-TejKj-PamjuBKzOZk8X1_DvmT5IKSa0pIdhMoY0RgwlJMuJBYHCUDmmcSc0XUcbwzJnGWK3WaDENYk3g4yxQXg0TP7FvnwFZoVLbu3aKJgXaFXsCG0IFFtQfEb9FkNg_ozm-3_sM1S2TQ1FeudlGb-hXgse-2flegeQu2WUZ_DK614HxznpzUZhvs8GeeJa93k8X4AT893z-OR0-45Jy2uLQ1FRXPaWpSUVlVZIVhlpSiyoSRkqg0TWVdKkLrwhREFmmupFFSRdbYvORnyVWf20CtN6XT3rjvufR6A3o0WzxqSgQThGYRvuzhPfi3zoZWr30HTdxPcyJzIeLfkP8onstUHbJoT5XgQwBb6z24nYHP-Jw-tKP7dnRsRx_a0SI6rHdCZJulhd_kv6Uv6WePnQ</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Xu, Jingshu</creator><creator>Wang, Xinrui</creator><creator>Li, Liyun</creator><creator>Du, Xiuli</creator><general>Korean Society of Civil Engineers</general><general>Springer Nature B.V</general><general>대한토목학회</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>ACYCR</scope><orcidid>https://orcid.org/0000-0003-3936-9203</orcidid><orcidid>https://orcid.org/0000-0002-8400-2374</orcidid></search><sort><creationdate>20240701</creationdate><title>Required Active Earth Pressure for 3D ERSs Following a Modified Mohr-Coulomb Strength Criterion</title><author>Xu, Jingshu ; Wang, Xinrui ; Li, Liyun ; Du, Xiuli</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c331t-cef15d3914a45de8b7ba2e0c5d75a66084446fc801fbab06b4986a868de8ae9c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Civil Engineering</topic><topic>Computation</topic><topic>Earth</topic><topic>Earth pressure</topic><topic>Engineering</topic><topic>Failure modes</topic><topic>Genetic algorithms</topic><topic>Geotechnical Engineering</topic><topic>Geotechnical Engineering &amp; Applied Earth Sciences</topic><topic>Industrial Pollution Prevention</topic><topic>Mohr-Coulomb theory</topic><topic>Particle swarm optimization</topic><topic>Plane strain</topic><topic>Pressure</topic><topic>Soil strength</topic><topic>Stability</topic><topic>Stability analysis</topic><topic>Stability criteria</topic><topic>Tensile strength</topic><topic>토목공학</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Jingshu</creatorcontrib><creatorcontrib>Wang, Xinrui</creatorcontrib><creatorcontrib>Li, Liyun</creatorcontrib><creatorcontrib>Du, Xiuli</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Korean Citation Index (Open Access)</collection><jtitle>KSCE journal of civil engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Jingshu</au><au>Wang, Xinrui</au><au>Li, Liyun</au><au>Du, Xiuli</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Required Active Earth Pressure for 3D ERSs Following a Modified Mohr-Coulomb Strength Criterion</atitle><jtitle>KSCE journal of civil engineering</jtitle><stitle>KSCE J Civ Eng</stitle><date>2024-07-01</date><risdate>2024</risdate><volume>28</volume><issue>7</issue><spage>2639</spage><epage>2646</epage><pages>2639-2646</pages><issn>1226-7988</issn><eissn>1976-3808</eissn><abstract>Exploiting the linear Mohr-Coulomb strength criterion, the stability computation for earth retaining structures (ERSs) by estimating the active earth pressure has been mainly conducted by setting the plane strain 2D. In this research, the modified MC strength criterion with reduced tensile strength is put into use for the stability analysis of ERSs employing a 3D multi-cone collapse analysis mechanism. After computing the coefficient of active earth pressure, the optimal results are captured from a combination of the genetic algorithm and particle swarm optimization. Research findings are validated through comparison, while the influences of soil tensile strength threshold and 3D geometrical features over the stability measures and critical failure modes of ERSs are explored by parametric assessment. It is revealed in this work that the linear MC strength criterion derives conservative estimates of the active earth pressure. The tensile strength threshold of soil has a pronounced effect on both the objective solutions and failure shapes, especially for the ERSs under a greater dimensionless cohesion c/γH . This work provides a straightforward approach to perform a 3D stability analysis of ERSs considering a tensile strength cutoff, without a pre-assumed distribution of the rupture angle.</abstract><cop>Seoul</cop><pub>Korean Society of Civil Engineers</pub><doi>10.1007/s12205-024-0356-5</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-3936-9203</orcidid><orcidid>https://orcid.org/0000-0002-8400-2374</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1226-7988
ispartof KSCE Journal of Civil Engineering, 2024, 28(7), , pp.2639-2646
issn 1226-7988
1976-3808
language eng
recordid cdi_nrf_kci_oai_kci_go_kr_ARTI_10525017
source Springer Nature
subjects Civil Engineering
Computation
Earth
Earth pressure
Engineering
Failure modes
Genetic algorithms
Geotechnical Engineering
Geotechnical Engineering & Applied Earth Sciences
Industrial Pollution Prevention
Mohr-Coulomb theory
Particle swarm optimization
Plane strain
Pressure
Soil strength
Stability
Stability analysis
Stability criteria
Tensile strength
토목공학
title Required Active Earth Pressure for 3D ERSs Following a Modified Mohr-Coulomb Strength Criterion
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T18%3A51%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_nrf_k&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Required%20Active%20Earth%20Pressure%20for%203D%20ERSs%20Following%20a%20Modified%20Mohr-Coulomb%20Strength%20Criterion&rft.jtitle=KSCE%20journal%20of%20civil%20engineering&rft.au=Xu,%20Jingshu&rft.date=2024-07-01&rft.volume=28&rft.issue=7&rft.spage=2639&rft.epage=2646&rft.pages=2639-2646&rft.issn=1226-7988&rft.eissn=1976-3808&rft_id=info:doi/10.1007/s12205-024-0356-5&rft_dat=%3Cproquest_nrf_k%3E3069396487%3C/proquest_nrf_k%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c331t-cef15d3914a45de8b7ba2e0c5d75a66084446fc801fbab06b4986a868de8ae9c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3069396487&rft_id=info:pmid/&rfr_iscdi=true