Loading…
Required Active Earth Pressure for 3D ERSs Following a Modified Mohr-Coulomb Strength Criterion
Exploiting the linear Mohr-Coulomb strength criterion, the stability computation for earth retaining structures (ERSs) by estimating the active earth pressure has been mainly conducted by setting the plane strain 2D. In this research, the modified MC strength criterion with reduced tensile strength...
Saved in:
Published in: | KSCE journal of civil engineering 2024, 28(7), , pp.2639-2646 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c331t-cef15d3914a45de8b7ba2e0c5d75a66084446fc801fbab06b4986a868de8ae9c3 |
container_end_page | 2646 |
container_issue | 7 |
container_start_page | 2639 |
container_title | KSCE journal of civil engineering |
container_volume | 28 |
creator | Xu, Jingshu Wang, Xinrui Li, Liyun Du, Xiuli |
description | Exploiting the linear Mohr-Coulomb strength criterion, the stability computation for earth retaining structures (ERSs) by estimating the active earth pressure has been mainly conducted by setting the plane strain 2D. In this research, the modified MC strength criterion with reduced tensile strength is put into use for the stability analysis of ERSs employing a 3D multi-cone collapse analysis mechanism. After computing the coefficient of active earth pressure, the optimal results are captured from a combination of the genetic algorithm and particle swarm optimization. Research findings are validated through comparison, while the influences of soil tensile strength threshold and 3D geometrical features over the stability measures and critical failure modes of ERSs are explored by parametric assessment. It is revealed in this work that the linear MC strength criterion derives conservative estimates of the active earth pressure. The tensile strength threshold of soil has a pronounced effect on both the objective solutions and failure shapes, especially for the ERSs under a greater dimensionless cohesion
c/γH
. This work provides a straightforward approach to perform a 3D stability analysis of ERSs considering a tensile strength cutoff, without a pre-assumed distribution of the rupture angle. |
doi_str_mv | 10.1007/s12205-024-0356-5 |
format | article |
fullrecord | <record><control><sourceid>proquest_nrf_k</sourceid><recordid>TN_cdi_nrf_kci_oai_kci_go_kr_ARTI_10525017</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3069396487</sourcerecordid><originalsourceid>FETCH-LOGICAL-c331t-cef15d3914a45de8b7ba2e0c5d75a66084446fc801fbab06b4986a868de8ae9c3</originalsourceid><addsrcrecordid>eNqFkctKAzEUhgdRsGgfwF3AnRDNZZLJLEutF7AobV2HzEymTS-TejKj-PamjuBKzOZk8X1_DvmT5IKSa0pIdhMoY0RgwlJMuJBYHCUDmmcSc0XUcbwzJnGWK3WaDENYk3g4yxQXg0TP7FvnwFZoVLbu3aKJgXaFXsCG0IFFtQfEb9FkNg_ozm-3_sM1S2TQ1FeudlGb-hXgse-2flegeQu2WUZ_DK614HxznpzUZhvs8GeeJa93k8X4AT893z-OR0-45Jy2uLQ1FRXPaWpSUVlVZIVhlpSiyoSRkqg0TWVdKkLrwhREFmmupFFSRdbYvORnyVWf20CtN6XT3rjvufR6A3o0WzxqSgQThGYRvuzhPfi3zoZWr30HTdxPcyJzIeLfkP8onstUHbJoT5XgQwBb6z24nYHP-Jw-tKP7dnRsRx_a0SI6rHdCZJulhd_kv6Uv6WePnQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3069396487</pqid></control><display><type>article</type><title>Required Active Earth Pressure for 3D ERSs Following a Modified Mohr-Coulomb Strength Criterion</title><source>Springer Nature</source><creator>Xu, Jingshu ; Wang, Xinrui ; Li, Liyun ; Du, Xiuli</creator><creatorcontrib>Xu, Jingshu ; Wang, Xinrui ; Li, Liyun ; Du, Xiuli</creatorcontrib><description>Exploiting the linear Mohr-Coulomb strength criterion, the stability computation for earth retaining structures (ERSs) by estimating the active earth pressure has been mainly conducted by setting the plane strain 2D. In this research, the modified MC strength criterion with reduced tensile strength is put into use for the stability analysis of ERSs employing a 3D multi-cone collapse analysis mechanism. After computing the coefficient of active earth pressure, the optimal results are captured from a combination of the genetic algorithm and particle swarm optimization. Research findings are validated through comparison, while the influences of soil tensile strength threshold and 3D geometrical features over the stability measures and critical failure modes of ERSs are explored by parametric assessment. It is revealed in this work that the linear MC strength criterion derives conservative estimates of the active earth pressure. The tensile strength threshold of soil has a pronounced effect on both the objective solutions and failure shapes, especially for the ERSs under a greater dimensionless cohesion
c/γH
. This work provides a straightforward approach to perform a 3D stability analysis of ERSs considering a tensile strength cutoff, without a pre-assumed distribution of the rupture angle.</description><identifier>ISSN: 1226-7988</identifier><identifier>EISSN: 1976-3808</identifier><identifier>DOI: 10.1007/s12205-024-0356-5</identifier><language>eng</language><publisher>Seoul: Korean Society of Civil Engineers</publisher><subject>Civil Engineering ; Computation ; Earth ; Earth pressure ; Engineering ; Failure modes ; Genetic algorithms ; Geotechnical Engineering ; Geotechnical Engineering & Applied Earth Sciences ; Industrial Pollution Prevention ; Mohr-Coulomb theory ; Particle swarm optimization ; Plane strain ; Pressure ; Soil strength ; Stability ; Stability analysis ; Stability criteria ; Tensile strength ; 토목공학</subject><ispartof>KSCE Journal of Civil Engineering, 2024, 28(7), , pp.2639-2646</ispartof><rights>Korean Society of Civil Engineers 2024</rights><rights>Korean Society of Civil Engineers 2024.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c331t-cef15d3914a45de8b7ba2e0c5d75a66084446fc801fbab06b4986a868de8ae9c3</cites><orcidid>0000-0003-3936-9203 ; 0000-0002-8400-2374</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003089316$$DAccess content in National Research Foundation of Korea (NRF)$$Hfree_for_read</backlink></links><search><creatorcontrib>Xu, Jingshu</creatorcontrib><creatorcontrib>Wang, Xinrui</creatorcontrib><creatorcontrib>Li, Liyun</creatorcontrib><creatorcontrib>Du, Xiuli</creatorcontrib><title>Required Active Earth Pressure for 3D ERSs Following a Modified Mohr-Coulomb Strength Criterion</title><title>KSCE journal of civil engineering</title><addtitle>KSCE J Civ Eng</addtitle><description>Exploiting the linear Mohr-Coulomb strength criterion, the stability computation for earth retaining structures (ERSs) by estimating the active earth pressure has been mainly conducted by setting the plane strain 2D. In this research, the modified MC strength criterion with reduced tensile strength is put into use for the stability analysis of ERSs employing a 3D multi-cone collapse analysis mechanism. After computing the coefficient of active earth pressure, the optimal results are captured from a combination of the genetic algorithm and particle swarm optimization. Research findings are validated through comparison, while the influences of soil tensile strength threshold and 3D geometrical features over the stability measures and critical failure modes of ERSs are explored by parametric assessment. It is revealed in this work that the linear MC strength criterion derives conservative estimates of the active earth pressure. The tensile strength threshold of soil has a pronounced effect on both the objective solutions and failure shapes, especially for the ERSs under a greater dimensionless cohesion
c/γH
. This work provides a straightforward approach to perform a 3D stability analysis of ERSs considering a tensile strength cutoff, without a pre-assumed distribution of the rupture angle.</description><subject>Civil Engineering</subject><subject>Computation</subject><subject>Earth</subject><subject>Earth pressure</subject><subject>Engineering</subject><subject>Failure modes</subject><subject>Genetic algorithms</subject><subject>Geotechnical Engineering</subject><subject>Geotechnical Engineering & Applied Earth Sciences</subject><subject>Industrial Pollution Prevention</subject><subject>Mohr-Coulomb theory</subject><subject>Particle swarm optimization</subject><subject>Plane strain</subject><subject>Pressure</subject><subject>Soil strength</subject><subject>Stability</subject><subject>Stability analysis</subject><subject>Stability criteria</subject><subject>Tensile strength</subject><subject>토목공학</subject><issn>1226-7988</issn><issn>1976-3808</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkctKAzEUhgdRsGgfwF3AnRDNZZLJLEutF7AobV2HzEymTS-TejKj-PamjuBKzOZk8X1_DvmT5IKSa0pIdhMoY0RgwlJMuJBYHCUDmmcSc0XUcbwzJnGWK3WaDENYk3g4yxQXg0TP7FvnwFZoVLbu3aKJgXaFXsCG0IFFtQfEb9FkNg_ozm-3_sM1S2TQ1FeudlGb-hXgse-2flegeQu2WUZ_DK614HxznpzUZhvs8GeeJa93k8X4AT893z-OR0-45Jy2uLQ1FRXPaWpSUVlVZIVhlpSiyoSRkqg0TWVdKkLrwhREFmmupFFSRdbYvORnyVWf20CtN6XT3rjvufR6A3o0WzxqSgQThGYRvuzhPfi3zoZWr30HTdxPcyJzIeLfkP8onstUHbJoT5XgQwBb6z24nYHP-Jw-tKP7dnRsRx_a0SI6rHdCZJulhd_kv6Uv6WePnQ</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Xu, Jingshu</creator><creator>Wang, Xinrui</creator><creator>Li, Liyun</creator><creator>Du, Xiuli</creator><general>Korean Society of Civil Engineers</general><general>Springer Nature B.V</general><general>대한토목학회</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>ACYCR</scope><orcidid>https://orcid.org/0000-0003-3936-9203</orcidid><orcidid>https://orcid.org/0000-0002-8400-2374</orcidid></search><sort><creationdate>20240701</creationdate><title>Required Active Earth Pressure for 3D ERSs Following a Modified Mohr-Coulomb Strength Criterion</title><author>Xu, Jingshu ; Wang, Xinrui ; Li, Liyun ; Du, Xiuli</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c331t-cef15d3914a45de8b7ba2e0c5d75a66084446fc801fbab06b4986a868de8ae9c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Civil Engineering</topic><topic>Computation</topic><topic>Earth</topic><topic>Earth pressure</topic><topic>Engineering</topic><topic>Failure modes</topic><topic>Genetic algorithms</topic><topic>Geotechnical Engineering</topic><topic>Geotechnical Engineering & Applied Earth Sciences</topic><topic>Industrial Pollution Prevention</topic><topic>Mohr-Coulomb theory</topic><topic>Particle swarm optimization</topic><topic>Plane strain</topic><topic>Pressure</topic><topic>Soil strength</topic><topic>Stability</topic><topic>Stability analysis</topic><topic>Stability criteria</topic><topic>Tensile strength</topic><topic>토목공학</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Jingshu</creatorcontrib><creatorcontrib>Wang, Xinrui</creatorcontrib><creatorcontrib>Li, Liyun</creatorcontrib><creatorcontrib>Du, Xiuli</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Korean Citation Index (Open Access)</collection><jtitle>KSCE journal of civil engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Jingshu</au><au>Wang, Xinrui</au><au>Li, Liyun</au><au>Du, Xiuli</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Required Active Earth Pressure for 3D ERSs Following a Modified Mohr-Coulomb Strength Criterion</atitle><jtitle>KSCE journal of civil engineering</jtitle><stitle>KSCE J Civ Eng</stitle><date>2024-07-01</date><risdate>2024</risdate><volume>28</volume><issue>7</issue><spage>2639</spage><epage>2646</epage><pages>2639-2646</pages><issn>1226-7988</issn><eissn>1976-3808</eissn><abstract>Exploiting the linear Mohr-Coulomb strength criterion, the stability computation for earth retaining structures (ERSs) by estimating the active earth pressure has been mainly conducted by setting the plane strain 2D. In this research, the modified MC strength criterion with reduced tensile strength is put into use for the stability analysis of ERSs employing a 3D multi-cone collapse analysis mechanism. After computing the coefficient of active earth pressure, the optimal results are captured from a combination of the genetic algorithm and particle swarm optimization. Research findings are validated through comparison, while the influences of soil tensile strength threshold and 3D geometrical features over the stability measures and critical failure modes of ERSs are explored by parametric assessment. It is revealed in this work that the linear MC strength criterion derives conservative estimates of the active earth pressure. The tensile strength threshold of soil has a pronounced effect on both the objective solutions and failure shapes, especially for the ERSs under a greater dimensionless cohesion
c/γH
. This work provides a straightforward approach to perform a 3D stability analysis of ERSs considering a tensile strength cutoff, without a pre-assumed distribution of the rupture angle.</abstract><cop>Seoul</cop><pub>Korean Society of Civil Engineers</pub><doi>10.1007/s12205-024-0356-5</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-3936-9203</orcidid><orcidid>https://orcid.org/0000-0002-8400-2374</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1226-7988 |
ispartof | KSCE Journal of Civil Engineering, 2024, 28(7), , pp.2639-2646 |
issn | 1226-7988 1976-3808 |
language | eng |
recordid | cdi_nrf_kci_oai_kci_go_kr_ARTI_10525017 |
source | Springer Nature |
subjects | Civil Engineering Computation Earth Earth pressure Engineering Failure modes Genetic algorithms Geotechnical Engineering Geotechnical Engineering & Applied Earth Sciences Industrial Pollution Prevention Mohr-Coulomb theory Particle swarm optimization Plane strain Pressure Soil strength Stability Stability analysis Stability criteria Tensile strength 토목공학 |
title | Required Active Earth Pressure for 3D ERSs Following a Modified Mohr-Coulomb Strength Criterion |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T18%3A51%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_nrf_k&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Required%20Active%20Earth%20Pressure%20for%203D%20ERSs%20Following%20a%20Modified%20Mohr-Coulomb%20Strength%20Criterion&rft.jtitle=KSCE%20journal%20of%20civil%20engineering&rft.au=Xu,%20Jingshu&rft.date=2024-07-01&rft.volume=28&rft.issue=7&rft.spage=2639&rft.epage=2646&rft.pages=2639-2646&rft.issn=1226-7988&rft.eissn=1976-3808&rft_id=info:doi/10.1007/s12205-024-0356-5&rft_dat=%3Cproquest_nrf_k%3E3069396487%3C/proquest_nrf_k%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c331t-cef15d3914a45de8b7ba2e0c5d75a66084446fc801fbab06b4986a868de8ae9c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3069396487&rft_id=info:pmid/&rfr_iscdi=true |