Loading…

A Novel Correction Method of Kubelka–Munk Model for Color Prediction of Pre-colored Fiber Blends

In order to apply the single-constant Kubelka–Munk (KM) model to color prediction of fiber blends, a novel correction method is proposed in the paper. The single-constant KM model is based on the assumption that the ratio of absorption coefficients to scattering coefficients ( K/S ) of a mixture is...

Full description

Saved in:
Bibliographic Details
Published in:Fibers and polymers 2024, 25(6), , pp.2139-2148
Main Authors: Wei, Chun‘ao, Xie, Dehong, Wan, Xiaoxia, Liu, Shiwei, Li, Junfeng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In order to apply the single-constant Kubelka–Munk (KM) model to color prediction of fiber blends, a novel correction method is proposed in the paper. The single-constant KM model is based on the assumption that the ratio of absorption coefficients to scattering coefficients ( K/S ) of a mixture is linear to mass proportion of its components. However, when it comes to the media of pre-colored fiber blends, the linear assumption always fails, resulting in inaccurate color prediction with large color difference. To solve this problem, a novel correction method was proposed, which improved the linearity of K/S in the way of decreasing the linear deviation. Pre-colored cotton fibers were used to prepare samples to examine the proposed correction method. The average color difference values ΔE cmc  (2:1) and ΔE 00 of the single-constant KM model with proposed correction method are 1.37 and 1.17 respectively, which are remarkably better than those of the Kubelka–Munk model without correction (~ 8.41 and 6.35) and the Kubelka–Munk model with Saunderson correction (~ 8.63 and 6.55). The results indicate that, for the media of pre-colored fiber blends, the proposed correction method greatly improves the color prediction accuracy.
ISSN:1229-9197
1875-0052
DOI:10.1007/s12221-024-00559-8