Loading…

Background music monitoring framework and dataset for TV broadcast audio

Music identification is widely regarded as a solved problem for music searching in quiet environments, but its performance tends to degrade in TV broadcast audio owing to the presence of dialogue or sound effects. In addition, constructing an accurate dataset for measuring the performance of backgro...

Full description

Saved in:
Bibliographic Details
Published in:ETRI journal 2024, 46(4), , pp.697-707
Main Authors: Kim, Hyemi, Kim, Junghyun, Park, Jihyun, Kim, Seongwoo, Park, Chanjin, Yoo, Wonyoung
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c3840-61bc8c9a79c6f448bc4510c2de0c3d09416676c914412fd10ece4a14d1ca50633
container_end_page 707
container_issue 4
container_start_page 697
container_title ETRI journal
container_volume 46
creator Kim, Hyemi
Kim, Junghyun
Park, Jihyun
Kim, Seongwoo
Park, Chanjin
Yoo, Wonyoung
description Music identification is widely regarded as a solved problem for music searching in quiet environments, but its performance tends to degrade in TV broadcast audio owing to the presence of dialogue or sound effects. In addition, constructing an accurate dataset for measuring the performance of background music monitoring in TV broadcast audio is challenging. We propose a framework for monitoring background music by automatic identification and introduce a background music cue sheet. The framework comprises three main components: music identification, music–speech separation, and music detection. In addition, we introduce the Cue‐K‐Drama dataset, which includes reference songs, audio tracks from 60 episodes of five Korean TV drama series, and corresponding cue sheets that provide the start and end timestamps of background music. Experimental results on the constructed and existing datasets demonstrate that the proposed framework, which incorporates music identification with music–speech separation and music detection, effectively enhances TV broadcast audio monitoring.
doi_str_mv 10.4218/etrij.2023-0249
format article
fullrecord <record><control><sourceid>wiley_nrf_k</sourceid><recordid>TN_cdi_nrf_kci_oai_kci_go_kr_ARTI_10586352</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_aa3e0e42ab8c43908ac37d8dee241bf9</doaj_id><sourcerecordid>ETR212680</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3840-61bc8c9a79c6f448bc4510c2de0c3d09416676c914412fd10ece4a14d1ca50633</originalsourceid><addsrcrecordid>eNqFkUtLAzEUhYMoWB9rt7MWxt7cZNLMsoqPgiCU6jbcucmU9BXJTBH_vX2IW1cH7j3n23xC3Ei40yjtMPQ5Lu4QUJWAuj4RA0SlypFCcyoGErEqjTbqXFx03QIAQVd2IF7uiZfznLYbX6y3XeRinTaxTzlu5kWbaR2-Ul4WtHt76qkLfdGmXMw-iiYn8kxdX9DWx3QlzlpadeH6Ny_F-9Pj7OGlfH17njyMX0tWVkNpZMOWaxrVbFqtbcO6ksDoA7DyUGtpzMhwLbWW2HoJgYMmqb1kqsAodSluj9xNbt2So0sUDzlPbpndeDqbOAmVNarCXXlyLPtEC_eZ45ry92FxOKQ8d5T7yKvgiFSAoJEay1rVYInVyFsfAmrZtPWONTyyOKeuy6H940lwewPuYMDtDbi9gd3CHBdfcRW-_6u7x9kUJRoL6gfxaYpx</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Background music monitoring framework and dataset for TV broadcast audio</title><source>Alma/SFX Local Collection</source><creator>Kim, Hyemi ; Kim, Junghyun ; Park, Jihyun ; Kim, Seongwoo ; Park, Chanjin ; Yoo, Wonyoung</creator><creatorcontrib>Kim, Hyemi ; Kim, Junghyun ; Park, Jihyun ; Kim, Seongwoo ; Park, Chanjin ; Yoo, Wonyoung</creatorcontrib><description>Music identification is widely regarded as a solved problem for music searching in quiet environments, but its performance tends to degrade in TV broadcast audio owing to the presence of dialogue or sound effects. In addition, constructing an accurate dataset for measuring the performance of background music monitoring in TV broadcast audio is challenging. We propose a framework for monitoring background music by automatic identification and introduce a background music cue sheet. The framework comprises three main components: music identification, music–speech separation, and music detection. In addition, we introduce the Cue‐K‐Drama dataset, which includes reference songs, audio tracks from 60 episodes of five Korean TV drama series, and corresponding cue sheets that provide the start and end timestamps of background music. Experimental results on the constructed and existing datasets demonstrate that the proposed framework, which incorporates music identification with music–speech separation and music detection, effectively enhances TV broadcast audio monitoring.</description><identifier>ISSN: 1225-6463</identifier><identifier>EISSN: 2233-7326</identifier><identifier>DOI: 10.4218/etrij.2023-0249</identifier><language>eng</language><publisher>Electronics and Telecommunications Research Institute (ETRI)</publisher><subject>broadcast monitoring ; cue sheet ; music detection ; music identification ; music–speech separation ; 전자/정보통신공학</subject><ispartof>ETRI Journal, 2024, 46(4), , pp.697-707</ispartof><rights>1225‐6463/$ © 2024 ETRI</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3840-61bc8c9a79c6f448bc4510c2de0c3d09416676c914412fd10ece4a14d1ca50633</cites><orcidid>0000-0002-3446-3498</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003106935$$DAccess content in National Research Foundation of Korea (NRF)$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Hyemi</creatorcontrib><creatorcontrib>Kim, Junghyun</creatorcontrib><creatorcontrib>Park, Jihyun</creatorcontrib><creatorcontrib>Kim, Seongwoo</creatorcontrib><creatorcontrib>Park, Chanjin</creatorcontrib><creatorcontrib>Yoo, Wonyoung</creatorcontrib><title>Background music monitoring framework and dataset for TV broadcast audio</title><title>ETRI journal</title><description>Music identification is widely regarded as a solved problem for music searching in quiet environments, but its performance tends to degrade in TV broadcast audio owing to the presence of dialogue or sound effects. In addition, constructing an accurate dataset for measuring the performance of background music monitoring in TV broadcast audio is challenging. We propose a framework for monitoring background music by automatic identification and introduce a background music cue sheet. The framework comprises three main components: music identification, music–speech separation, and music detection. In addition, we introduce the Cue‐K‐Drama dataset, which includes reference songs, audio tracks from 60 episodes of five Korean TV drama series, and corresponding cue sheets that provide the start and end timestamps of background music. Experimental results on the constructed and existing datasets demonstrate that the proposed framework, which incorporates music identification with music–speech separation and music detection, effectively enhances TV broadcast audio monitoring.</description><subject>broadcast monitoring</subject><subject>cue sheet</subject><subject>music detection</subject><subject>music identification</subject><subject>music–speech separation</subject><subject>전자/정보통신공학</subject><issn>1225-6463</issn><issn>2233-7326</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNqFkUtLAzEUhYMoWB9rt7MWxt7cZNLMsoqPgiCU6jbcucmU9BXJTBH_vX2IW1cH7j3n23xC3Ei40yjtMPQ5Lu4QUJWAuj4RA0SlypFCcyoGErEqjTbqXFx03QIAQVd2IF7uiZfznLYbX6y3XeRinTaxTzlu5kWbaR2-Ul4WtHt76qkLfdGmXMw-iiYn8kxdX9DWx3QlzlpadeH6Ny_F-9Pj7OGlfH17njyMX0tWVkNpZMOWaxrVbFqtbcO6ksDoA7DyUGtpzMhwLbWW2HoJgYMmqb1kqsAodSluj9xNbt2So0sUDzlPbpndeDqbOAmVNarCXXlyLPtEC_eZ45ry92FxOKQ8d5T7yKvgiFSAoJEay1rVYInVyFsfAmrZtPWONTyyOKeuy6H940lwewPuYMDtDbi9gd3CHBdfcRW-_6u7x9kUJRoL6gfxaYpx</recordid><startdate>202408</startdate><enddate>202408</enddate><creator>Kim, Hyemi</creator><creator>Kim, Junghyun</creator><creator>Park, Jihyun</creator><creator>Kim, Seongwoo</creator><creator>Park, Chanjin</creator><creator>Yoo, Wonyoung</creator><general>Electronics and Telecommunications Research Institute (ETRI)</general><general>한국전자통신연구원</general><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><scope>ACYCR</scope><orcidid>https://orcid.org/0000-0002-3446-3498</orcidid></search><sort><creationdate>202408</creationdate><title>Background music monitoring framework and dataset for TV broadcast audio</title><author>Kim, Hyemi ; Kim, Junghyun ; Park, Jihyun ; Kim, Seongwoo ; Park, Chanjin ; Yoo, Wonyoung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3840-61bc8c9a79c6f448bc4510c2de0c3d09416676c914412fd10ece4a14d1ca50633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>broadcast monitoring</topic><topic>cue sheet</topic><topic>music detection</topic><topic>music identification</topic><topic>music–speech separation</topic><topic>전자/정보통신공학</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Hyemi</creatorcontrib><creatorcontrib>Kim, Junghyun</creatorcontrib><creatorcontrib>Park, Jihyun</creatorcontrib><creatorcontrib>Kim, Seongwoo</creatorcontrib><creatorcontrib>Park, Chanjin</creatorcontrib><creatorcontrib>Yoo, Wonyoung</creatorcontrib><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><collection>Korean Citation Index</collection><jtitle>ETRI journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Hyemi</au><au>Kim, Junghyun</au><au>Park, Jihyun</au><au>Kim, Seongwoo</au><au>Park, Chanjin</au><au>Yoo, Wonyoung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Background music monitoring framework and dataset for TV broadcast audio</atitle><jtitle>ETRI journal</jtitle><date>2024-08</date><risdate>2024</risdate><volume>46</volume><issue>4</issue><spage>697</spage><epage>707</epage><pages>697-707</pages><issn>1225-6463</issn><eissn>2233-7326</eissn><abstract>Music identification is widely regarded as a solved problem for music searching in quiet environments, but its performance tends to degrade in TV broadcast audio owing to the presence of dialogue or sound effects. In addition, constructing an accurate dataset for measuring the performance of background music monitoring in TV broadcast audio is challenging. We propose a framework for monitoring background music by automatic identification and introduce a background music cue sheet. The framework comprises three main components: music identification, music–speech separation, and music detection. In addition, we introduce the Cue‐K‐Drama dataset, which includes reference songs, audio tracks from 60 episodes of five Korean TV drama series, and corresponding cue sheets that provide the start and end timestamps of background music. Experimental results on the constructed and existing datasets demonstrate that the proposed framework, which incorporates music identification with music–speech separation and music detection, effectively enhances TV broadcast audio monitoring.</abstract><pub>Electronics and Telecommunications Research Institute (ETRI)</pub><doi>10.4218/etrij.2023-0249</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-3446-3498</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1225-6463
ispartof ETRI Journal, 2024, 46(4), , pp.697-707
issn 1225-6463
2233-7326
language eng
recordid cdi_nrf_kci_oai_kci_go_kr_ARTI_10586352
source Alma/SFX Local Collection
subjects broadcast monitoring
cue sheet
music detection
music identification
music–speech separation
전자/정보통신공학
title Background music monitoring framework and dataset for TV broadcast audio
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T20%3A59%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_nrf_k&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Background%20music%20monitoring%20framework%20and%20dataset%20for%20TV%20broadcast%20audio&rft.jtitle=ETRI%20journal&rft.au=Kim,%20Hyemi&rft.date=2024-08&rft.volume=46&rft.issue=4&rft.spage=697&rft.epage=707&rft.pages=697-707&rft.issn=1225-6463&rft.eissn=2233-7326&rft_id=info:doi/10.4218/etrij.2023-0249&rft_dat=%3Cwiley_nrf_k%3EETR212680%3C/wiley_nrf_k%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3840-61bc8c9a79c6f448bc4510c2de0c3d09416676c914412fd10ece4a14d1ca50633%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true