Loading…
Background music monitoring framework and dataset for TV broadcast audio
Music identification is widely regarded as a solved problem for music searching in quiet environments, but its performance tends to degrade in TV broadcast audio owing to the presence of dialogue or sound effects. In addition, constructing an accurate dataset for measuring the performance of backgro...
Saved in:
Published in: | ETRI journal 2024, 46(4), , pp.697-707 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c3840-61bc8c9a79c6f448bc4510c2de0c3d09416676c914412fd10ece4a14d1ca50633 |
container_end_page | 707 |
container_issue | 4 |
container_start_page | 697 |
container_title | ETRI journal |
container_volume | 46 |
creator | Kim, Hyemi Kim, Junghyun Park, Jihyun Kim, Seongwoo Park, Chanjin Yoo, Wonyoung |
description | Music identification is widely regarded as a solved problem for music searching in quiet environments, but its performance tends to degrade in TV broadcast audio owing to the presence of dialogue or sound effects. In addition, constructing an accurate dataset for measuring the performance of background music monitoring in TV broadcast audio is challenging. We propose a framework for monitoring background music by automatic identification and introduce a background music cue sheet. The framework comprises three main components: music identification, music–speech separation, and music detection. In addition, we introduce the Cue‐K‐Drama dataset, which includes reference songs, audio tracks from 60 episodes of five Korean TV drama series, and corresponding cue sheets that provide the start and end timestamps of background music. Experimental results on the constructed and existing datasets demonstrate that the proposed framework, which incorporates music identification with music–speech separation and music detection, effectively enhances TV broadcast audio monitoring. |
doi_str_mv | 10.4218/etrij.2023-0249 |
format | article |
fullrecord | <record><control><sourceid>wiley_nrf_k</sourceid><recordid>TN_cdi_nrf_kci_oai_kci_go_kr_ARTI_10586352</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_aa3e0e42ab8c43908ac37d8dee241bf9</doaj_id><sourcerecordid>ETR212680</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3840-61bc8c9a79c6f448bc4510c2de0c3d09416676c914412fd10ece4a14d1ca50633</originalsourceid><addsrcrecordid>eNqFkUtLAzEUhYMoWB9rt7MWxt7cZNLMsoqPgiCU6jbcucmU9BXJTBH_vX2IW1cH7j3n23xC3Ei40yjtMPQ5Lu4QUJWAuj4RA0SlypFCcyoGErEqjTbqXFx03QIAQVd2IF7uiZfznLYbX6y3XeRinTaxTzlu5kWbaR2-Ul4WtHt76qkLfdGmXMw-iiYn8kxdX9DWx3QlzlpadeH6Ny_F-9Pj7OGlfH17njyMX0tWVkNpZMOWaxrVbFqtbcO6ksDoA7DyUGtpzMhwLbWW2HoJgYMmqb1kqsAodSluj9xNbt2So0sUDzlPbpndeDqbOAmVNarCXXlyLPtEC_eZ45ry92FxOKQ8d5T7yKvgiFSAoJEay1rVYInVyFsfAmrZtPWONTyyOKeuy6H940lwewPuYMDtDbi9gd3CHBdfcRW-_6u7x9kUJRoL6gfxaYpx</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Background music monitoring framework and dataset for TV broadcast audio</title><source>Alma/SFX Local Collection</source><creator>Kim, Hyemi ; Kim, Junghyun ; Park, Jihyun ; Kim, Seongwoo ; Park, Chanjin ; Yoo, Wonyoung</creator><creatorcontrib>Kim, Hyemi ; Kim, Junghyun ; Park, Jihyun ; Kim, Seongwoo ; Park, Chanjin ; Yoo, Wonyoung</creatorcontrib><description>Music identification is widely regarded as a solved problem for music searching in quiet environments, but its performance tends to degrade in TV broadcast audio owing to the presence of dialogue or sound effects. In addition, constructing an accurate dataset for measuring the performance of background music monitoring in TV broadcast audio is challenging. We propose a framework for monitoring background music by automatic identification and introduce a background music cue sheet. The framework comprises three main components: music identification, music–speech separation, and music detection. In addition, we introduce the Cue‐K‐Drama dataset, which includes reference songs, audio tracks from 60 episodes of five Korean TV drama series, and corresponding cue sheets that provide the start and end timestamps of background music. Experimental results on the constructed and existing datasets demonstrate that the proposed framework, which incorporates music identification with music–speech separation and music detection, effectively enhances TV broadcast audio monitoring.</description><identifier>ISSN: 1225-6463</identifier><identifier>EISSN: 2233-7326</identifier><identifier>DOI: 10.4218/etrij.2023-0249</identifier><language>eng</language><publisher>Electronics and Telecommunications Research Institute (ETRI)</publisher><subject>broadcast monitoring ; cue sheet ; music detection ; music identification ; music–speech separation ; 전자/정보통신공학</subject><ispartof>ETRI Journal, 2024, 46(4), , pp.697-707</ispartof><rights>1225‐6463/$ © 2024 ETRI</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3840-61bc8c9a79c6f448bc4510c2de0c3d09416676c914412fd10ece4a14d1ca50633</cites><orcidid>0000-0002-3446-3498</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003106935$$DAccess content in National Research Foundation of Korea (NRF)$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Hyemi</creatorcontrib><creatorcontrib>Kim, Junghyun</creatorcontrib><creatorcontrib>Park, Jihyun</creatorcontrib><creatorcontrib>Kim, Seongwoo</creatorcontrib><creatorcontrib>Park, Chanjin</creatorcontrib><creatorcontrib>Yoo, Wonyoung</creatorcontrib><title>Background music monitoring framework and dataset for TV broadcast audio</title><title>ETRI journal</title><description>Music identification is widely regarded as a solved problem for music searching in quiet environments, but its performance tends to degrade in TV broadcast audio owing to the presence of dialogue or sound effects. In addition, constructing an accurate dataset for measuring the performance of background music monitoring in TV broadcast audio is challenging. We propose a framework for monitoring background music by automatic identification and introduce a background music cue sheet. The framework comprises three main components: music identification, music–speech separation, and music detection. In addition, we introduce the Cue‐K‐Drama dataset, which includes reference songs, audio tracks from 60 episodes of five Korean TV drama series, and corresponding cue sheets that provide the start and end timestamps of background music. Experimental results on the constructed and existing datasets demonstrate that the proposed framework, which incorporates music identification with music–speech separation and music detection, effectively enhances TV broadcast audio monitoring.</description><subject>broadcast monitoring</subject><subject>cue sheet</subject><subject>music detection</subject><subject>music identification</subject><subject>music–speech separation</subject><subject>전자/정보통신공학</subject><issn>1225-6463</issn><issn>2233-7326</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNqFkUtLAzEUhYMoWB9rt7MWxt7cZNLMsoqPgiCU6jbcucmU9BXJTBH_vX2IW1cH7j3n23xC3Ei40yjtMPQ5Lu4QUJWAuj4RA0SlypFCcyoGErEqjTbqXFx03QIAQVd2IF7uiZfznLYbX6y3XeRinTaxTzlu5kWbaR2-Ul4WtHt76qkLfdGmXMw-iiYn8kxdX9DWx3QlzlpadeH6Ny_F-9Pj7OGlfH17njyMX0tWVkNpZMOWaxrVbFqtbcO6ksDoA7DyUGtpzMhwLbWW2HoJgYMmqb1kqsAodSluj9xNbt2So0sUDzlPbpndeDqbOAmVNarCXXlyLPtEC_eZ45ry92FxOKQ8d5T7yKvgiFSAoJEay1rVYInVyFsfAmrZtPWONTyyOKeuy6H940lwewPuYMDtDbi9gd3CHBdfcRW-_6u7x9kUJRoL6gfxaYpx</recordid><startdate>202408</startdate><enddate>202408</enddate><creator>Kim, Hyemi</creator><creator>Kim, Junghyun</creator><creator>Park, Jihyun</creator><creator>Kim, Seongwoo</creator><creator>Park, Chanjin</creator><creator>Yoo, Wonyoung</creator><general>Electronics and Telecommunications Research Institute (ETRI)</general><general>한국전자통신연구원</general><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><scope>ACYCR</scope><orcidid>https://orcid.org/0000-0002-3446-3498</orcidid></search><sort><creationdate>202408</creationdate><title>Background music monitoring framework and dataset for TV broadcast audio</title><author>Kim, Hyemi ; Kim, Junghyun ; Park, Jihyun ; Kim, Seongwoo ; Park, Chanjin ; Yoo, Wonyoung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3840-61bc8c9a79c6f448bc4510c2de0c3d09416676c914412fd10ece4a14d1ca50633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>broadcast monitoring</topic><topic>cue sheet</topic><topic>music detection</topic><topic>music identification</topic><topic>music–speech separation</topic><topic>전자/정보통신공학</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Hyemi</creatorcontrib><creatorcontrib>Kim, Junghyun</creatorcontrib><creatorcontrib>Park, Jihyun</creatorcontrib><creatorcontrib>Kim, Seongwoo</creatorcontrib><creatorcontrib>Park, Chanjin</creatorcontrib><creatorcontrib>Yoo, Wonyoung</creatorcontrib><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><collection>Korean Citation Index</collection><jtitle>ETRI journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Hyemi</au><au>Kim, Junghyun</au><au>Park, Jihyun</au><au>Kim, Seongwoo</au><au>Park, Chanjin</au><au>Yoo, Wonyoung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Background music monitoring framework and dataset for TV broadcast audio</atitle><jtitle>ETRI journal</jtitle><date>2024-08</date><risdate>2024</risdate><volume>46</volume><issue>4</issue><spage>697</spage><epage>707</epage><pages>697-707</pages><issn>1225-6463</issn><eissn>2233-7326</eissn><abstract>Music identification is widely regarded as a solved problem for music searching in quiet environments, but its performance tends to degrade in TV broadcast audio owing to the presence of dialogue or sound effects. In addition, constructing an accurate dataset for measuring the performance of background music monitoring in TV broadcast audio is challenging. We propose a framework for monitoring background music by automatic identification and introduce a background music cue sheet. The framework comprises three main components: music identification, music–speech separation, and music detection. In addition, we introduce the Cue‐K‐Drama dataset, which includes reference songs, audio tracks from 60 episodes of five Korean TV drama series, and corresponding cue sheets that provide the start and end timestamps of background music. Experimental results on the constructed and existing datasets demonstrate that the proposed framework, which incorporates music identification with music–speech separation and music detection, effectively enhances TV broadcast audio monitoring.</abstract><pub>Electronics and Telecommunications Research Institute (ETRI)</pub><doi>10.4218/etrij.2023-0249</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-3446-3498</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1225-6463 |
ispartof | ETRI Journal, 2024, 46(4), , pp.697-707 |
issn | 1225-6463 2233-7326 |
language | eng |
recordid | cdi_nrf_kci_oai_kci_go_kr_ARTI_10586352 |
source | Alma/SFX Local Collection |
subjects | broadcast monitoring cue sheet music detection music identification music–speech separation 전자/정보통신공학 |
title | Background music monitoring framework and dataset for TV broadcast audio |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T20%3A59%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_nrf_k&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Background%20music%20monitoring%20framework%20and%20dataset%20for%20TV%20broadcast%20audio&rft.jtitle=ETRI%20journal&rft.au=Kim,%20Hyemi&rft.date=2024-08&rft.volume=46&rft.issue=4&rft.spage=697&rft.epage=707&rft.pages=697-707&rft.issn=1225-6463&rft.eissn=2233-7326&rft_id=info:doi/10.4218/etrij.2023-0249&rft_dat=%3Cwiley_nrf_k%3EETR212680%3C/wiley_nrf_k%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3840-61bc8c9a79c6f448bc4510c2de0c3d09416676c914412fd10ece4a14d1ca50633%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |