Loading…

Optimization of accelerated solvent extraction of zeaxanthin from orange paprika using response surface methodology and an artificial neural network coupled with a genetic algorithm

This study aimed to optimize the accelerated solvent extraction (ASE) condition of zeaxanthin from orange paprika using a response surface methodology (RSM) or an artificial neural network (ANN) with a genetic algorithm (GA). Input variables were ethanol concentration, extraction time, and extractio...

Full description

Saved in:
Bibliographic Details
Published in:Food science and biotechnology 2024, 33(11), , pp.2521-2531
Main Authors: Kim, Jaecheol, Lee, Ga Eun, Kim, Suna
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This study aimed to optimize the accelerated solvent extraction (ASE) condition of zeaxanthin from orange paprika using a response surface methodology (RSM) or an artificial neural network (ANN) with a genetic algorithm (GA). Input variables were ethanol concentration, extraction time, and extraction temperature, while output variable was zeaxanthin. The mean squared error and regression correlation coefficient of the developed ANN model were 0.3038 and 0.9983, respectively. Predicted optimal extraction conditions from ANN-GA for maximum zeaxanthin were 100% ethanol, 3.4 min, and 99.2 °C. The relative errors under the optimal extraction conditions were RSM for 10.46% and ANN-GA for 2.18%. We showed that the recovery of hydrophobic zeaxanthin could be performed using ethanol, an eco-friendly solvent, via ASE, and the extraction efficiency could be improved by ANN-GA modeling than RSM. Therefore, combining ASE and ANN-GA might be desirable for the efficient and eco-friendly extraction of hydrophobic functional materials from food resources.
ISSN:1226-7708
2092-6456
2092-6456
DOI:10.1007/s10068-023-01514-8