Loading…

N-recognins UBR1 and UBR2 as central ER stress sensors in mammals

In eukaryotes, a primary protein quality control (PQC) process involves the destruction of conformationally misfolded proteins through the ubiquitin-proteasome system. Because approximately one-third of eukaryotic proteomes fold and assemble within the endoplasmic reticulum (ER) before being sent to...

Full description

Saved in:
Bibliographic Details
Published in:Molecules and cells 2024, 47(1), , pp.1-8
Main Authors: Le, Ly Thi Huong Luu, Park, Seoyoung, Lee, Jung Hoon, Kim, Yun Kyung, Lee, Min Jae
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c448t-4910e70a8cf40e7e8fd2fdd53317b6f2aec220b3d614e811decf12656d7f0abd3
container_end_page 100001
container_issue 1
container_start_page 100001
container_title Molecules and cells
container_volume 47
creator Le, Ly Thi Huong Luu
Park, Seoyoung
Lee, Jung Hoon
Kim, Yun Kyung
Lee, Min Jae
description In eukaryotes, a primary protein quality control (PQC) process involves the destruction of conformationally misfolded proteins through the ubiquitin-proteasome system. Because approximately one-third of eukaryotic proteomes fold and assemble within the endoplasmic reticulum (ER) before being sent to their destinations, the ER plays a crucial role in PQC. The specific functions and biochemical roles of several E3 ubiquitin ligases involved in ER-associated degradation in mammals, on the other hand, are mainly unknown. We identified 2 E3 ligases, ubiquitin protein ligase E3 component N-recognin 1 (UBR1) and ubiquitin protein ligase E3 component N-recognin 2 (UBR2), which are the key N-recognins in the N-degron pathway and participate in the ER stress response in mammalian cells by modulating their stability. Cells lacking UBR1 and UBR2 are hypersensitive to ER stress-induced apoptosis. Under normal circumstances, these proteins are polyubiquitinated through Lys48-specific linkages and are then degraded by the 26S proteasome. In contrast, when cells are subjected to ER stress, UBR1 and UBR2 exhibit greater stability, potentially as a cellular adaptive response to stressful conditions. Although the precise mechanisms underlying these findings require further investigation, our findings show that cytoplasmic UBR1 and UBR2 have anti-ER stress activities and contribute to global PQC in mammals. These data also reveal an additional level of complexity within the mammalian ER-associated degradation system, implicating potential involvement of the N-degron pathway.
doi_str_mv 10.1016/j.mocell.2023.12.001
format article
fullrecord <record><control><sourceid>proquest_nrf_k</sourceid><recordid>TN_cdi_nrf_kci_oai_kci_go_kr_ARTI_10586777</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1016847823252516</els_id><sourcerecordid>2928853537</sourcerecordid><originalsourceid>FETCH-LOGICAL-c448t-4910e70a8cf40e7e8fd2fdd53317b6f2aec220b3d614e811decf12656d7f0abd3</originalsourceid><addsrcrecordid>eNp9kV9LHDEUxUNpqVvtNxDJYynMNH9mJtkXZSu2FaTCos8hm9xo1p1Ek1nBb2_G2Yq-9OleyO-ce3MPQoeU1JTQ7se67qOBzaZmhPGaspoQ-gHNCKPzihLOPqLZyFWyEXIPfcl5XQDRMfkZ7XHJRddIMkOLv1UCE2-CDxlf_1xSrIMdG4Z1xgbCkPQGny1xHhLkjDOEHFPGPuBe973e5AP0yZUCX3d1H13_Ors6_VNdXP4-P11cVKZp5FA1c0pAEC2Na0oD0lnmrG05p2LVOabBMEZW3Ha0AUmpBeMo69rOCkf0yvJ99H3yDcmpO-NV1P6l3kR1l9RieXWuKGllJ4Qo8MkE329XPdjdP9R98r1OTy_S9y_B3xajx-IgJSFCFodvO4cUH7aQB9X7PN5bB4jbrNicSdnylo_Dmgk1KeacwL3OoUSNGai1mrJSY1aKMlWiKLKjtzu-iv6FU4DjCYBy1kcPSWXjIRiwvmQ2KBv9_yc8A-Qppgs</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2928853537</pqid></control><display><type>article</type><title>N-recognins UBR1 and UBR2 as central ER stress sensors in mammals</title><source>NCBI_PubMed Central(免费)</source><source>ScienceDirect Journals</source><creator>Le, Ly Thi Huong Luu ; Park, Seoyoung ; Lee, Jung Hoon ; Kim, Yun Kyung ; Lee, Min Jae</creator><creatorcontrib>Le, Ly Thi Huong Luu ; Park, Seoyoung ; Lee, Jung Hoon ; Kim, Yun Kyung ; Lee, Min Jae</creatorcontrib><description>In eukaryotes, a primary protein quality control (PQC) process involves the destruction of conformationally misfolded proteins through the ubiquitin-proteasome system. Because approximately one-third of eukaryotic proteomes fold and assemble within the endoplasmic reticulum (ER) before being sent to their destinations, the ER plays a crucial role in PQC. The specific functions and biochemical roles of several E3 ubiquitin ligases involved in ER-associated degradation in mammals, on the other hand, are mainly unknown. We identified 2 E3 ligases, ubiquitin protein ligase E3 component N-recognin 1 (UBR1) and ubiquitin protein ligase E3 component N-recognin 2 (UBR2), which are the key N-recognins in the N-degron pathway and participate in the ER stress response in mammalian cells by modulating their stability. Cells lacking UBR1 and UBR2 are hypersensitive to ER stress-induced apoptosis. Under normal circumstances, these proteins are polyubiquitinated through Lys48-specific linkages and are then degraded by the 26S proteasome. In contrast, when cells are subjected to ER stress, UBR1 and UBR2 exhibit greater stability, potentially as a cellular adaptive response to stressful conditions. Although the precise mechanisms underlying these findings require further investigation, our findings show that cytoplasmic UBR1 and UBR2 have anti-ER stress activities and contribute to global PQC in mammals. These data also reveal an additional level of complexity within the mammalian ER-associated degradation system, implicating potential involvement of the N-degron pathway.</description><identifier>ISSN: 1016-8478</identifier><identifier>EISSN: 0219-1032</identifier><identifier>DOI: 10.1016/j.mocell.2023.12.001</identifier><identifier>PMID: 38376480</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Auto-ubiquitination ; Endoplasmic reticulum stress ; N-degron pathway ; Protein quality control ; Thapsigargin ; 생물학</subject><ispartof>Molecules and Cells, 2024, 47(1), , pp.1-8</ispartof><rights>2023 The Author(s)</rights><rights>Copyright © 2023 The Author(s). Published by Elsevier Inc. All rights reserved.</rights><rights>2023 The Author(s) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c448t-4910e70a8cf40e7e8fd2fdd53317b6f2aec220b3d614e811decf12656d7f0abd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10880078/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1016847823252516$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,3549,27924,27925,45780,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38376480$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003104837$$DAccess content in National Research Foundation of Korea (NRF)$$Hfree_for_read</backlink></links><search><creatorcontrib>Le, Ly Thi Huong Luu</creatorcontrib><creatorcontrib>Park, Seoyoung</creatorcontrib><creatorcontrib>Lee, Jung Hoon</creatorcontrib><creatorcontrib>Kim, Yun Kyung</creatorcontrib><creatorcontrib>Lee, Min Jae</creatorcontrib><title>N-recognins UBR1 and UBR2 as central ER stress sensors in mammals</title><title>Molecules and cells</title><addtitle>Mol Cells</addtitle><description>In eukaryotes, a primary protein quality control (PQC) process involves the destruction of conformationally misfolded proteins through the ubiquitin-proteasome system. Because approximately one-third of eukaryotic proteomes fold and assemble within the endoplasmic reticulum (ER) before being sent to their destinations, the ER plays a crucial role in PQC. The specific functions and biochemical roles of several E3 ubiquitin ligases involved in ER-associated degradation in mammals, on the other hand, are mainly unknown. We identified 2 E3 ligases, ubiquitin protein ligase E3 component N-recognin 1 (UBR1) and ubiquitin protein ligase E3 component N-recognin 2 (UBR2), which are the key N-recognins in the N-degron pathway and participate in the ER stress response in mammalian cells by modulating their stability. Cells lacking UBR1 and UBR2 are hypersensitive to ER stress-induced apoptosis. Under normal circumstances, these proteins are polyubiquitinated through Lys48-specific linkages and are then degraded by the 26S proteasome. In contrast, when cells are subjected to ER stress, UBR1 and UBR2 exhibit greater stability, potentially as a cellular adaptive response to stressful conditions. Although the precise mechanisms underlying these findings require further investigation, our findings show that cytoplasmic UBR1 and UBR2 have anti-ER stress activities and contribute to global PQC in mammals. These data also reveal an additional level of complexity within the mammalian ER-associated degradation system, implicating potential involvement of the N-degron pathway.</description><subject>Auto-ubiquitination</subject><subject>Endoplasmic reticulum stress</subject><subject>N-degron pathway</subject><subject>Protein quality control</subject><subject>Thapsigargin</subject><subject>생물학</subject><issn>1016-8478</issn><issn>0219-1032</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kV9LHDEUxUNpqVvtNxDJYynMNH9mJtkXZSu2FaTCos8hm9xo1p1Ek1nBb2_G2Yq-9OleyO-ce3MPQoeU1JTQ7se67qOBzaZmhPGaspoQ-gHNCKPzihLOPqLZyFWyEXIPfcl5XQDRMfkZ7XHJRddIMkOLv1UCE2-CDxlf_1xSrIMdG4Z1xgbCkPQGny1xHhLkjDOEHFPGPuBe973e5AP0yZUCX3d1H13_Ors6_VNdXP4-P11cVKZp5FA1c0pAEC2Na0oD0lnmrG05p2LVOabBMEZW3Ha0AUmpBeMo69rOCkf0yvJ99H3yDcmpO-NV1P6l3kR1l9RieXWuKGllJ4Qo8MkE329XPdjdP9R98r1OTy_S9y_B3xajx-IgJSFCFodvO4cUH7aQB9X7PN5bB4jbrNicSdnylo_Dmgk1KeacwL3OoUSNGai1mrJSY1aKMlWiKLKjtzu-iv6FU4DjCYBy1kcPSWXjIRiwvmQ2KBv9_yc8A-Qppgs</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Le, Ly Thi Huong Luu</creator><creator>Park, Seoyoung</creator><creator>Lee, Jung Hoon</creator><creator>Kim, Yun Kyung</creator><creator>Lee, Min Jae</creator><general>Elsevier Inc</general><general>Korean Society for Molecular and Cellular Biology</general><general>한국분자세포생물학회</general><scope>6I.</scope><scope>AAFTH</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>ACYCR</scope></search><sort><creationdate>20240101</creationdate><title>N-recognins UBR1 and UBR2 as central ER stress sensors in mammals</title><author>Le, Ly Thi Huong Luu ; Park, Seoyoung ; Lee, Jung Hoon ; Kim, Yun Kyung ; Lee, Min Jae</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c448t-4910e70a8cf40e7e8fd2fdd53317b6f2aec220b3d614e811decf12656d7f0abd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Auto-ubiquitination</topic><topic>Endoplasmic reticulum stress</topic><topic>N-degron pathway</topic><topic>Protein quality control</topic><topic>Thapsigargin</topic><topic>생물학</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Le, Ly Thi Huong Luu</creatorcontrib><creatorcontrib>Park, Seoyoung</creatorcontrib><creatorcontrib>Lee, Jung Hoon</creatorcontrib><creatorcontrib>Kim, Yun Kyung</creatorcontrib><creatorcontrib>Lee, Min Jae</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Korean Citation Index (Open Access)</collection><jtitle>Molecules and cells</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Le, Ly Thi Huong Luu</au><au>Park, Seoyoung</au><au>Lee, Jung Hoon</au><au>Kim, Yun Kyung</au><au>Lee, Min Jae</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>N-recognins UBR1 and UBR2 as central ER stress sensors in mammals</atitle><jtitle>Molecules and cells</jtitle><addtitle>Mol Cells</addtitle><date>2024-01-01</date><risdate>2024</risdate><volume>47</volume><issue>1</issue><spage>100001</spage><epage>100001</epage><pages>100001-100001</pages><artnum>100001</artnum><issn>1016-8478</issn><eissn>0219-1032</eissn><abstract>In eukaryotes, a primary protein quality control (PQC) process involves the destruction of conformationally misfolded proteins through the ubiquitin-proteasome system. Because approximately one-third of eukaryotic proteomes fold and assemble within the endoplasmic reticulum (ER) before being sent to their destinations, the ER plays a crucial role in PQC. The specific functions and biochemical roles of several E3 ubiquitin ligases involved in ER-associated degradation in mammals, on the other hand, are mainly unknown. We identified 2 E3 ligases, ubiquitin protein ligase E3 component N-recognin 1 (UBR1) and ubiquitin protein ligase E3 component N-recognin 2 (UBR2), which are the key N-recognins in the N-degron pathway and participate in the ER stress response in mammalian cells by modulating their stability. Cells lacking UBR1 and UBR2 are hypersensitive to ER stress-induced apoptosis. Under normal circumstances, these proteins are polyubiquitinated through Lys48-specific linkages and are then degraded by the 26S proteasome. In contrast, when cells are subjected to ER stress, UBR1 and UBR2 exhibit greater stability, potentially as a cellular adaptive response to stressful conditions. Although the precise mechanisms underlying these findings require further investigation, our findings show that cytoplasmic UBR1 and UBR2 have anti-ER stress activities and contribute to global PQC in mammals. These data also reveal an additional level of complexity within the mammalian ER-associated degradation system, implicating potential involvement of the N-degron pathway.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>38376480</pmid><doi>10.1016/j.mocell.2023.12.001</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1016-8478
ispartof Molecules and Cells, 2024, 47(1), , pp.1-8
issn 1016-8478
0219-1032
language eng
recordid cdi_nrf_kci_oai_kci_go_kr_ARTI_10586777
source NCBI_PubMed Central(免费); ScienceDirect Journals
subjects Auto-ubiquitination
Endoplasmic reticulum stress
N-degron pathway
Protein quality control
Thapsigargin
생물학
title N-recognins UBR1 and UBR2 as central ER stress sensors in mammals
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T11%3A05%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_nrf_k&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=N-recognins%20UBR1%20and%20UBR2%20as%20central%20ER%20stress%20sensors%20in%20mammals&rft.jtitle=Molecules%20and%20cells&rft.au=Le,%20Ly%20Thi%20Huong%20Luu&rft.date=2024-01-01&rft.volume=47&rft.issue=1&rft.spage=100001&rft.epage=100001&rft.pages=100001-100001&rft.artnum=100001&rft.issn=1016-8478&rft.eissn=0219-1032&rft_id=info:doi/10.1016/j.mocell.2023.12.001&rft_dat=%3Cproquest_nrf_k%3E2928853537%3C/proquest_nrf_k%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c448t-4910e70a8cf40e7e8fd2fdd53317b6f2aec220b3d614e811decf12656d7f0abd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2928853537&rft_id=info:pmid/38376480&rfr_iscdi=true