Loading…
Fault feature extraction of a rotor system based on local mean decomposition and Teager energy kurtosis
Feature extraction is the most important step for machine fault diagnosis, but useful features are very difficult to extract from the vibration signals, especially for intelligent fault diagnosis based on data-driven technique. An integral method for fault feature extraction based on local mean deco...
Saved in:
Published in: | Journal of mechanical science and technology 2014, 28(4), , pp.1161-1169 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c383t-31324ce168696b972b3c2e2612815871621c24a00e7812241eae3c6d0a483d43 |
---|---|
cites | cdi_FETCH-LOGICAL-c383t-31324ce168696b972b3c2e2612815871621c24a00e7812241eae3c6d0a483d43 |
container_end_page | 1169 |
container_issue | 4 |
container_start_page | 1161 |
container_title | Journal of mechanical science and technology |
container_volume | 28 |
creator | Deng, Linfeng Zhao, Rongzhen |
description | Feature extraction is the most important step for machine fault diagnosis, but useful features are very difficult to extract from the vibration signals, especially for intelligent fault diagnosis based on data-driven technique. An integral method for fault feature extraction based on local mean decomposition (LMD) and Teager energy kurtosis (TEK) is proposed in this paper. The raw vibration signals are first processed via LMD to produce a group of product functions (PFs). Then, the Teager energies are computed using the derived PFs. Subsequently, each Teager energy data set is directly used to calculate the corresponding TEK. A vibration experiment was performed on a rotor-bearing rig with rub-impact fault to validate the proposed method. The experimental results show that the proposed method can extract different TEKs from the mechanical vibration signals under two different operating conditions. These TEKs can be employed to identify the normal and rub-impact fault conditions and construct a numerical-valued machine fault decision table, which proves that the proposed method is suitable for fault feature extraction of the rotor-bearing system. |
doi_str_mv | 10.1007/s12206-013-1149-9 |
format | article |
fullrecord | <record><control><sourceid>proquest_nrf_k</sourceid><recordid>TN_cdi_nrf_kci_oai_kci_go_kr_ARTI_1058857</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3290273051</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-31324ce168696b972b3c2e2612815871621c24a00e7812241eae3c6d0a483d43</originalsourceid><addsrcrecordid>eNp1kUFr4zAQhU3ZQrtpf0Bvgl7ag3c1kizJxxDabSFQWHLoTSjyOLixrawkQ_PvV6n3UBZ6moH53htmXlHcAP0BlKqfERijsqTASwBRl_VZcQm1kiXXTHzLveK6FLV4vSi-x_hGqWQC4LLYPdqpT6RFm6aABN9TsC51fiS-JZYEn3wg8RgTDmRrIzYkj3rvbE8GtCNp0Pnh4GP3obFjQzZodxgIjhh2R7KfQsrTeFWct7aPeP2vLorN48Nm9VSuX349r5br0nHNU8mBM-EQpJa13NaKbbljyCQwDZVWIBk4JiylqHS-WABa5E421ArNG8EXxf1sO4bW7F1nvO0-6s6bfTDL35tnA7TSulKZvZvZQ_B_JozJDF102Pd2RD9FA1JBpbTgJ9vb_9A3P4UxH2KgYpTWggHLFMyUCz7GgK05hG6w4ZhXmlNKZk7J5JTMKSVTZw2bNTGzY37cJ-cvRX8BixyTBg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1520094212</pqid></control><display><type>article</type><title>Fault feature extraction of a rotor system based on local mean decomposition and Teager energy kurtosis</title><source>Springer Nature</source><creator>Deng, Linfeng ; Zhao, Rongzhen</creator><creatorcontrib>Deng, Linfeng ; Zhao, Rongzhen</creatorcontrib><description>Feature extraction is the most important step for machine fault diagnosis, but useful features are very difficult to extract from the vibration signals, especially for intelligent fault diagnosis based on data-driven technique. An integral method for fault feature extraction based on local mean decomposition (LMD) and Teager energy kurtosis (TEK) is proposed in this paper. The raw vibration signals are first processed via LMD to produce a group of product functions (PFs). Then, the Teager energies are computed using the derived PFs. Subsequently, each Teager energy data set is directly used to calculate the corresponding TEK. A vibration experiment was performed on a rotor-bearing rig with rub-impact fault to validate the proposed method. The experimental results show that the proposed method can extract different TEKs from the mechanical vibration signals under two different operating conditions. These TEKs can be employed to identify the normal and rub-impact fault conditions and construct a numerical-valued machine fault decision table, which proves that the proposed method is suitable for fault feature extraction of the rotor-bearing system.</description><identifier>ISSN: 1738-494X</identifier><identifier>EISSN: 1976-3824</identifier><identifier>DOI: 10.1007/s12206-013-1149-9</identifier><language>eng</language><publisher>Heidelberg: Korean Society of Mechanical Engineers</publisher><subject>Control ; Dynamical Systems ; Energy use ; Engineering ; Fault diagnosis ; Faults ; Feature extraction ; Industrial and Production Engineering ; Kurtosis ; Mathematical analysis ; Mathematical models ; Mechanical Engineering ; Vibration ; 기계공학</subject><ispartof>Journal of Mechanical Science and Technology, 2014, 28(4), , pp.1161-1169</ispartof><rights>The Korean Society of Mechanical Engineers and Springer-Verlag Berlin Heidelberg 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-31324ce168696b972b3c2e2612815871621c24a00e7812241eae3c6d0a483d43</citedby><cites>FETCH-LOGICAL-c383t-31324ce168696b972b3c2e2612815871621c24a00e7812241eae3c6d0a483d43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART001859984$$DAccess content in National Research Foundation of Korea (NRF)$$Hfree_for_read</backlink></links><search><creatorcontrib>Deng, Linfeng</creatorcontrib><creatorcontrib>Zhao, Rongzhen</creatorcontrib><title>Fault feature extraction of a rotor system based on local mean decomposition and Teager energy kurtosis</title><title>Journal of mechanical science and technology</title><addtitle>J Mech Sci Technol</addtitle><description>Feature extraction is the most important step for machine fault diagnosis, but useful features are very difficult to extract from the vibration signals, especially for intelligent fault diagnosis based on data-driven technique. An integral method for fault feature extraction based on local mean decomposition (LMD) and Teager energy kurtosis (TEK) is proposed in this paper. The raw vibration signals are first processed via LMD to produce a group of product functions (PFs). Then, the Teager energies are computed using the derived PFs. Subsequently, each Teager energy data set is directly used to calculate the corresponding TEK. A vibration experiment was performed on a rotor-bearing rig with rub-impact fault to validate the proposed method. The experimental results show that the proposed method can extract different TEKs from the mechanical vibration signals under two different operating conditions. These TEKs can be employed to identify the normal and rub-impact fault conditions and construct a numerical-valued machine fault decision table, which proves that the proposed method is suitable for fault feature extraction of the rotor-bearing system.</description><subject>Control</subject><subject>Dynamical Systems</subject><subject>Energy use</subject><subject>Engineering</subject><subject>Fault diagnosis</subject><subject>Faults</subject><subject>Feature extraction</subject><subject>Industrial and Production Engineering</subject><subject>Kurtosis</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mechanical Engineering</subject><subject>Vibration</subject><subject>기계공학</subject><issn>1738-494X</issn><issn>1976-3824</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp1kUFr4zAQhU3ZQrtpf0Bvgl7ag3c1kizJxxDabSFQWHLoTSjyOLixrawkQ_PvV6n3UBZ6moH53htmXlHcAP0BlKqfERijsqTASwBRl_VZcQm1kiXXTHzLveK6FLV4vSi-x_hGqWQC4LLYPdqpT6RFm6aABN9TsC51fiS-JZYEn3wg8RgTDmRrIzYkj3rvbE8GtCNp0Pnh4GP3obFjQzZodxgIjhh2R7KfQsrTeFWct7aPeP2vLorN48Nm9VSuX349r5br0nHNU8mBM-EQpJa13NaKbbljyCQwDZVWIBk4JiylqHS-WABa5E421ArNG8EXxf1sO4bW7F1nvO0-6s6bfTDL35tnA7TSulKZvZvZQ_B_JozJDF102Pd2RD9FA1JBpbTgJ9vb_9A3P4UxH2KgYpTWggHLFMyUCz7GgK05hG6w4ZhXmlNKZk7J5JTMKSVTZw2bNTGzY37cJ-cvRX8BixyTBg</recordid><startdate>20140401</startdate><enddate>20140401</enddate><creator>Deng, Linfeng</creator><creator>Zhao, Rongzhen</creator><general>Korean Society of Mechanical Engineers</general><general>Springer Nature B.V</general><general>대한기계학회</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>S0W</scope><scope>7SU</scope><scope>C1K</scope><scope>ACYCR</scope></search><sort><creationdate>20140401</creationdate><title>Fault feature extraction of a rotor system based on local mean decomposition and Teager energy kurtosis</title><author>Deng, Linfeng ; Zhao, Rongzhen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-31324ce168696b972b3c2e2612815871621c24a00e7812241eae3c6d0a483d43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Control</topic><topic>Dynamical Systems</topic><topic>Energy use</topic><topic>Engineering</topic><topic>Fault diagnosis</topic><topic>Faults</topic><topic>Feature extraction</topic><topic>Industrial and Production Engineering</topic><topic>Kurtosis</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mechanical Engineering</topic><topic>Vibration</topic><topic>기계공학</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Deng, Linfeng</creatorcontrib><creatorcontrib>Zhao, Rongzhen</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>DELNET Engineering & Technology Collection</collection><collection>Environmental Engineering Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Korean Citation Index</collection><jtitle>Journal of mechanical science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Deng, Linfeng</au><au>Zhao, Rongzhen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fault feature extraction of a rotor system based on local mean decomposition and Teager energy kurtosis</atitle><jtitle>Journal of mechanical science and technology</jtitle><stitle>J Mech Sci Technol</stitle><date>2014-04-01</date><risdate>2014</risdate><volume>28</volume><issue>4</issue><spage>1161</spage><epage>1169</epage><pages>1161-1169</pages><issn>1738-494X</issn><eissn>1976-3824</eissn><abstract>Feature extraction is the most important step for machine fault diagnosis, but useful features are very difficult to extract from the vibration signals, especially for intelligent fault diagnosis based on data-driven technique. An integral method for fault feature extraction based on local mean decomposition (LMD) and Teager energy kurtosis (TEK) is proposed in this paper. The raw vibration signals are first processed via LMD to produce a group of product functions (PFs). Then, the Teager energies are computed using the derived PFs. Subsequently, each Teager energy data set is directly used to calculate the corresponding TEK. A vibration experiment was performed on a rotor-bearing rig with rub-impact fault to validate the proposed method. The experimental results show that the proposed method can extract different TEKs from the mechanical vibration signals under two different operating conditions. These TEKs can be employed to identify the normal and rub-impact fault conditions and construct a numerical-valued machine fault decision table, which proves that the proposed method is suitable for fault feature extraction of the rotor-bearing system.</abstract><cop>Heidelberg</cop><pub>Korean Society of Mechanical Engineers</pub><doi>10.1007/s12206-013-1149-9</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1738-494X |
ispartof | Journal of Mechanical Science and Technology, 2014, 28(4), , pp.1161-1169 |
issn | 1738-494X 1976-3824 |
language | eng |
recordid | cdi_nrf_kci_oai_kci_go_kr_ARTI_1058857 |
source | Springer Nature |
subjects | Control Dynamical Systems Energy use Engineering Fault diagnosis Faults Feature extraction Industrial and Production Engineering Kurtosis Mathematical analysis Mathematical models Mechanical Engineering Vibration 기계공학 |
title | Fault feature extraction of a rotor system based on local mean decomposition and Teager energy kurtosis |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T03%3A30%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_nrf_k&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fault%20feature%20extraction%20of%20a%20rotor%20system%20based%20on%20local%20mean%20decomposition%20and%20Teager%20energy%20kurtosis&rft.jtitle=Journal%20of%20mechanical%20science%20and%20technology&rft.au=Deng,%20Linfeng&rft.date=2014-04-01&rft.volume=28&rft.issue=4&rft.spage=1161&rft.epage=1169&rft.pages=1161-1169&rft.issn=1738-494X&rft.eissn=1976-3824&rft_id=info:doi/10.1007/s12206-013-1149-9&rft_dat=%3Cproquest_nrf_k%3E3290273051%3C/proquest_nrf_k%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c383t-31324ce168696b972b3c2e2612815871621c24a00e7812241eae3c6d0a483d43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1520094212&rft_id=info:pmid/&rfr_iscdi=true |