Loading…

Fault feature extraction of a rotor system based on local mean decomposition and Teager energy kurtosis

Feature extraction is the most important step for machine fault diagnosis, but useful features are very difficult to extract from the vibration signals, especially for intelligent fault diagnosis based on data-driven technique. An integral method for fault feature extraction based on local mean deco...

Full description

Saved in:
Bibliographic Details
Published in:Journal of mechanical science and technology 2014, 28(4), , pp.1161-1169
Main Authors: Deng, Linfeng, Zhao, Rongzhen
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c383t-31324ce168696b972b3c2e2612815871621c24a00e7812241eae3c6d0a483d43
cites cdi_FETCH-LOGICAL-c383t-31324ce168696b972b3c2e2612815871621c24a00e7812241eae3c6d0a483d43
container_end_page 1169
container_issue 4
container_start_page 1161
container_title Journal of mechanical science and technology
container_volume 28
creator Deng, Linfeng
Zhao, Rongzhen
description Feature extraction is the most important step for machine fault diagnosis, but useful features are very difficult to extract from the vibration signals, especially for intelligent fault diagnosis based on data-driven technique. An integral method for fault feature extraction based on local mean decomposition (LMD) and Teager energy kurtosis (TEK) is proposed in this paper. The raw vibration signals are first processed via LMD to produce a group of product functions (PFs). Then, the Teager energies are computed using the derived PFs. Subsequently, each Teager energy data set is directly used to calculate the corresponding TEK. A vibration experiment was performed on a rotor-bearing rig with rub-impact fault to validate the proposed method. The experimental results show that the proposed method can extract different TEKs from the mechanical vibration signals under two different operating conditions. These TEKs can be employed to identify the normal and rub-impact fault conditions and construct a numerical-valued machine fault decision table, which proves that the proposed method is suitable for fault feature extraction of the rotor-bearing system.
doi_str_mv 10.1007/s12206-013-1149-9
format article
fullrecord <record><control><sourceid>proquest_nrf_k</sourceid><recordid>TN_cdi_nrf_kci_oai_kci_go_kr_ARTI_1058857</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3290273051</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-31324ce168696b972b3c2e2612815871621c24a00e7812241eae3c6d0a483d43</originalsourceid><addsrcrecordid>eNp1kUFr4zAQhU3ZQrtpf0Bvgl7ag3c1kizJxxDabSFQWHLoTSjyOLixrawkQ_PvV6n3UBZ6moH53htmXlHcAP0BlKqfERijsqTASwBRl_VZcQm1kiXXTHzLveK6FLV4vSi-x_hGqWQC4LLYPdqpT6RFm6aABN9TsC51fiS-JZYEn3wg8RgTDmRrIzYkj3rvbE8GtCNp0Pnh4GP3obFjQzZodxgIjhh2R7KfQsrTeFWct7aPeP2vLorN48Nm9VSuX349r5br0nHNU8mBM-EQpJa13NaKbbljyCQwDZVWIBk4JiylqHS-WABa5E421ArNG8EXxf1sO4bW7F1nvO0-6s6bfTDL35tnA7TSulKZvZvZQ_B_JozJDF102Pd2RD9FA1JBpbTgJ9vb_9A3P4UxH2KgYpTWggHLFMyUCz7GgK05hG6w4ZhXmlNKZk7J5JTMKSVTZw2bNTGzY37cJ-cvRX8BixyTBg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1520094212</pqid></control><display><type>article</type><title>Fault feature extraction of a rotor system based on local mean decomposition and Teager energy kurtosis</title><source>Springer Nature</source><creator>Deng, Linfeng ; Zhao, Rongzhen</creator><creatorcontrib>Deng, Linfeng ; Zhao, Rongzhen</creatorcontrib><description>Feature extraction is the most important step for machine fault diagnosis, but useful features are very difficult to extract from the vibration signals, especially for intelligent fault diagnosis based on data-driven technique. An integral method for fault feature extraction based on local mean decomposition (LMD) and Teager energy kurtosis (TEK) is proposed in this paper. The raw vibration signals are first processed via LMD to produce a group of product functions (PFs). Then, the Teager energies are computed using the derived PFs. Subsequently, each Teager energy data set is directly used to calculate the corresponding TEK. A vibration experiment was performed on a rotor-bearing rig with rub-impact fault to validate the proposed method. The experimental results show that the proposed method can extract different TEKs from the mechanical vibration signals under two different operating conditions. These TEKs can be employed to identify the normal and rub-impact fault conditions and construct a numerical-valued machine fault decision table, which proves that the proposed method is suitable for fault feature extraction of the rotor-bearing system.</description><identifier>ISSN: 1738-494X</identifier><identifier>EISSN: 1976-3824</identifier><identifier>DOI: 10.1007/s12206-013-1149-9</identifier><language>eng</language><publisher>Heidelberg: Korean Society of Mechanical Engineers</publisher><subject>Control ; Dynamical Systems ; Energy use ; Engineering ; Fault diagnosis ; Faults ; Feature extraction ; Industrial and Production Engineering ; Kurtosis ; Mathematical analysis ; Mathematical models ; Mechanical Engineering ; Vibration ; 기계공학</subject><ispartof>Journal of Mechanical Science and Technology, 2014, 28(4), , pp.1161-1169</ispartof><rights>The Korean Society of Mechanical Engineers and Springer-Verlag Berlin Heidelberg 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-31324ce168696b972b3c2e2612815871621c24a00e7812241eae3c6d0a483d43</citedby><cites>FETCH-LOGICAL-c383t-31324ce168696b972b3c2e2612815871621c24a00e7812241eae3c6d0a483d43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART001859984$$DAccess content in National Research Foundation of Korea (NRF)$$Hfree_for_read</backlink></links><search><creatorcontrib>Deng, Linfeng</creatorcontrib><creatorcontrib>Zhao, Rongzhen</creatorcontrib><title>Fault feature extraction of a rotor system based on local mean decomposition and Teager energy kurtosis</title><title>Journal of mechanical science and technology</title><addtitle>J Mech Sci Technol</addtitle><description>Feature extraction is the most important step for machine fault diagnosis, but useful features are very difficult to extract from the vibration signals, especially for intelligent fault diagnosis based on data-driven technique. An integral method for fault feature extraction based on local mean decomposition (LMD) and Teager energy kurtosis (TEK) is proposed in this paper. The raw vibration signals are first processed via LMD to produce a group of product functions (PFs). Then, the Teager energies are computed using the derived PFs. Subsequently, each Teager energy data set is directly used to calculate the corresponding TEK. A vibration experiment was performed on a rotor-bearing rig with rub-impact fault to validate the proposed method. The experimental results show that the proposed method can extract different TEKs from the mechanical vibration signals under two different operating conditions. These TEKs can be employed to identify the normal and rub-impact fault conditions and construct a numerical-valued machine fault decision table, which proves that the proposed method is suitable for fault feature extraction of the rotor-bearing system.</description><subject>Control</subject><subject>Dynamical Systems</subject><subject>Energy use</subject><subject>Engineering</subject><subject>Fault diagnosis</subject><subject>Faults</subject><subject>Feature extraction</subject><subject>Industrial and Production Engineering</subject><subject>Kurtosis</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mechanical Engineering</subject><subject>Vibration</subject><subject>기계공학</subject><issn>1738-494X</issn><issn>1976-3824</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp1kUFr4zAQhU3ZQrtpf0Bvgl7ag3c1kizJxxDabSFQWHLoTSjyOLixrawkQ_PvV6n3UBZ6moH53htmXlHcAP0BlKqfERijsqTASwBRl_VZcQm1kiXXTHzLveK6FLV4vSi-x_hGqWQC4LLYPdqpT6RFm6aABN9TsC51fiS-JZYEn3wg8RgTDmRrIzYkj3rvbE8GtCNp0Pnh4GP3obFjQzZodxgIjhh2R7KfQsrTeFWct7aPeP2vLorN48Nm9VSuX349r5br0nHNU8mBM-EQpJa13NaKbbljyCQwDZVWIBk4JiylqHS-WABa5E421ArNG8EXxf1sO4bW7F1nvO0-6s6bfTDL35tnA7TSulKZvZvZQ_B_JozJDF102Pd2RD9FA1JBpbTgJ9vb_9A3P4UxH2KgYpTWggHLFMyUCz7GgK05hG6w4ZhXmlNKZk7J5JTMKSVTZw2bNTGzY37cJ-cvRX8BixyTBg</recordid><startdate>20140401</startdate><enddate>20140401</enddate><creator>Deng, Linfeng</creator><creator>Zhao, Rongzhen</creator><general>Korean Society of Mechanical Engineers</general><general>Springer Nature B.V</general><general>대한기계학회</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>S0W</scope><scope>7SU</scope><scope>C1K</scope><scope>ACYCR</scope></search><sort><creationdate>20140401</creationdate><title>Fault feature extraction of a rotor system based on local mean decomposition and Teager energy kurtosis</title><author>Deng, Linfeng ; Zhao, Rongzhen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-31324ce168696b972b3c2e2612815871621c24a00e7812241eae3c6d0a483d43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Control</topic><topic>Dynamical Systems</topic><topic>Energy use</topic><topic>Engineering</topic><topic>Fault diagnosis</topic><topic>Faults</topic><topic>Feature extraction</topic><topic>Industrial and Production Engineering</topic><topic>Kurtosis</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mechanical Engineering</topic><topic>Vibration</topic><topic>기계공학</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Deng, Linfeng</creatorcontrib><creatorcontrib>Zhao, Rongzhen</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>DELNET Engineering &amp; Technology Collection</collection><collection>Environmental Engineering Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Korean Citation Index</collection><jtitle>Journal of mechanical science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Deng, Linfeng</au><au>Zhao, Rongzhen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fault feature extraction of a rotor system based on local mean decomposition and Teager energy kurtosis</atitle><jtitle>Journal of mechanical science and technology</jtitle><stitle>J Mech Sci Technol</stitle><date>2014-04-01</date><risdate>2014</risdate><volume>28</volume><issue>4</issue><spage>1161</spage><epage>1169</epage><pages>1161-1169</pages><issn>1738-494X</issn><eissn>1976-3824</eissn><abstract>Feature extraction is the most important step for machine fault diagnosis, but useful features are very difficult to extract from the vibration signals, especially for intelligent fault diagnosis based on data-driven technique. An integral method for fault feature extraction based on local mean decomposition (LMD) and Teager energy kurtosis (TEK) is proposed in this paper. The raw vibration signals are first processed via LMD to produce a group of product functions (PFs). Then, the Teager energies are computed using the derived PFs. Subsequently, each Teager energy data set is directly used to calculate the corresponding TEK. A vibration experiment was performed on a rotor-bearing rig with rub-impact fault to validate the proposed method. The experimental results show that the proposed method can extract different TEKs from the mechanical vibration signals under two different operating conditions. These TEKs can be employed to identify the normal and rub-impact fault conditions and construct a numerical-valued machine fault decision table, which proves that the proposed method is suitable for fault feature extraction of the rotor-bearing system.</abstract><cop>Heidelberg</cop><pub>Korean Society of Mechanical Engineers</pub><doi>10.1007/s12206-013-1149-9</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1738-494X
ispartof Journal of Mechanical Science and Technology, 2014, 28(4), , pp.1161-1169
issn 1738-494X
1976-3824
language eng
recordid cdi_nrf_kci_oai_kci_go_kr_ARTI_1058857
source Springer Nature
subjects Control
Dynamical Systems
Energy use
Engineering
Fault diagnosis
Faults
Feature extraction
Industrial and Production Engineering
Kurtosis
Mathematical analysis
Mathematical models
Mechanical Engineering
Vibration
기계공학
title Fault feature extraction of a rotor system based on local mean decomposition and Teager energy kurtosis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T03%3A30%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_nrf_k&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fault%20feature%20extraction%20of%20a%20rotor%20system%20based%20on%20local%20mean%20decomposition%20and%20Teager%20energy%20kurtosis&rft.jtitle=Journal%20of%20mechanical%20science%20and%20technology&rft.au=Deng,%20Linfeng&rft.date=2014-04-01&rft.volume=28&rft.issue=4&rft.spage=1161&rft.epage=1169&rft.pages=1161-1169&rft.issn=1738-494X&rft.eissn=1976-3824&rft_id=info:doi/10.1007/s12206-013-1149-9&rft_dat=%3Cproquest_nrf_k%3E3290273051%3C/proquest_nrf_k%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c383t-31324ce168696b972b3c2e2612815871621c24a00e7812241eae3c6d0a483d43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1520094212&rft_id=info:pmid/&rfr_iscdi=true