Loading…

A review of spurious currents in the lattice Boltzmann method for multiphase flows

A spurious current is a small-amplitude artificial velocity field which arises from an imbalance between discretized forces in multiphase/multi-component flows. If it occurs, the velocity field may persist indefinitely, preventing the achievement of a true equilibrium state. Spurious velocities can...

Full description

Saved in:
Bibliographic Details
Published in:Journal of mechanical science and technology 2012, 26(12), , pp.3857-3863
Main Authors: Connington, Kevin, Lee, Taehun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A spurious current is a small-amplitude artificial velocity field which arises from an imbalance between discretized forces in multiphase/multi-component flows. If it occurs, the velocity field may persist indefinitely, preventing the achievement of a true equilibrium state. Spurious velocities can sometimes be as large as the characteristic velocities of the problem, causing severe instability and ambiguity between physical and spurious velocities. They are typically exacerbated by large values of numerical surface tension or when the two fluids being simulated have large density ratios. The resulting instability can restrict what parameters may be simulated. To varying degrees, spurious currents are found in all multiphase flow models of the lattice Boltzmann method (LBM). There have been many studies of the occurrence of the phenomenon, and many suggestions on how to eliminate it. This paper reviews the three main models of simulating multiphase/multi-component flow in the lattice Boltzmann method, as well as the subsequent modifications made in order to reduce or eliminate spurious currents.
ISSN:1738-494X
1976-3824
DOI:10.1007/s12206-012-1011-5