Loading…

Numerical simulation of the effects of a suction line heat exchanger on vapor compression refrigeration cycle performance

Most modern refrigerators incorporate heat transfer between the refrigerant in a capillary tube and the refrigerant in a suction line. This heat transfer is achieved by a non-adiabatic capillary tube called a capillary tube-suction line heat exchanger and is supposed to improve the performance of th...

Full description

Saved in:
Bibliographic Details
Published in:Journal of mechanical science and technology 2012, 26(4), , pp.1213-1226
Main Authors: Jeong, Ji Hwan, Park, Sang-Goo, Sarker, Debasish, Chang, Keun Sun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Most modern refrigerators incorporate heat transfer between the refrigerant in a capillary tube and the refrigerant in a suction line. This heat transfer is achieved by a non-adiabatic capillary tube called a capillary tube-suction line heat exchanger and is supposed to improve the performance of the small vapor compression refrigeration cycle by removing some enthalpy of the refrigerant at the evaporator entrance. To investigate the effects of this heat transfer on the refrigeration cycle, a computer program was developed based on conservation equations of mass, momentum, and energy. The non-adiabatic capillary tube model is based on a homogeneous two-phase flow model. The simulation results show that both the location and length of the heat exchange section influence the coefficient of performance (COP) as well as the cooling capacity. It is noteworthy that the influence was not monotonic; that is, the performance may be deteriorated under certain conditions.
ISSN:1738-494X
1976-3824
DOI:10.1007/s12206-012-0204-2