Loading…
Hybrid discretization method for time-delay nonlinear systems
A hybrid discretization scheme that combines the virtues of the Taylor series and Matrix exponential integration methods is proposed. In the algorithm, each sampling time interval is divided into two subintervals to be considered according to the time delay and sampling period. The algorithm is not...
Saved in:
Published in: | Journal of mechanical science and technology 2010, 24(3), , pp.731-741 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c412t-ce8579bb1b721827449a05a97443a167ca7699acfbe212d4ee07b28b2fc09f213 |
---|---|
cites | cdi_FETCH-LOGICAL-c412t-ce8579bb1b721827449a05a97443a167ca7699acfbe212d4ee07b28b2fc09f213 |
container_end_page | 741 |
container_issue | 3 |
container_start_page | 731 |
container_title | Journal of mechanical science and technology |
container_volume | 24 |
creator | Zhang, Zheng Kostyukova, Olga Zhang, Yuanliang Chong, Kil To |
description | A hybrid discretization scheme that combines the virtues of the Taylor series and Matrix exponential integration methods is proposed. In the algorithm, each sampling time interval is divided into two subintervals to be considered according to the time delay and sampling period. The algorithm is not too expensive computationally and lends itself to be easily inserted into large simulation packages. The mathematical structure of the new discretization scheme is explored and described in detail. The performance of the proposed discretization procedure is evaluated by employing case studies. Various input signals, sampling rates, and time-delay values are considered to test the proposed method. The results demonstrate that the proposed discretization scheme is better than previous Taylor series method for nonlinear time-delay systems, especially when a large sampling period is inevitable. |
doi_str_mv | 10.1007/s12206-010-0124-y |
format | article |
fullrecord | <record><control><sourceid>proquest_nrf_k</sourceid><recordid>TN_cdi_nrf_kci_oai_kci_go_kr_ARTI_1060683</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2374184521</sourcerecordid><originalsourceid>FETCH-LOGICAL-c412t-ce8579bb1b721827449a05a97443a167ca7699acfbe212d4ee07b28b2fc09f213</originalsourceid><addsrcrecordid>eNp1kEtLxTAQhYsoeH38AHdFEHRRzUxzk2bhQsQXCIIouAtpml6jbaJJ76L-enOtKAguhhmYb05yTpbtATkGQvhJBETCCgIkFdJiXMtmIDgrygrpepp5WRVU0KfNbCvGF0IYUoBZdno91sE2eWOjDmawH2qw3uW9GZ59k7c-5IPtTdGYTo25866zzqiQxzEOpo872Uarumh2v_t29nh58XB-XdzeXd2cn90WmgIOhTbVnIu6hpojVMgpFYrMlUhDqYBxrTgTQum2NgjYUGMIr7GqsdVEtAjldnY06brQyldtpVf2qy-8fA3y7P7hRgJhhFVlYg8n9i3496WJg-yTN9N1yhm_jBKQMT7nSOcJ3f-DvvhlcMmJrDgwyhFpgmCCdPAxBtPKt2B7Fcb0olxlL6fsZcperrKXY7o5-BZWUauuDcppG38OkyxnlVj5womLaeUWJvx-4H_xT4KPkok</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>871647224</pqid></control><display><type>article</type><title>Hybrid discretization method for time-delay nonlinear systems</title><source>Springer Nature</source><creator>Zhang, Zheng ; Kostyukova, Olga ; Zhang, Yuanliang ; Chong, Kil To</creator><creatorcontrib>Zhang, Zheng ; Kostyukova, Olga ; Zhang, Yuanliang ; Chong, Kil To</creatorcontrib><description>A hybrid discretization scheme that combines the virtues of the Taylor series and Matrix exponential integration methods is proposed. In the algorithm, each sampling time interval is divided into two subintervals to be considered according to the time delay and sampling period. The algorithm is not too expensive computationally and lends itself to be easily inserted into large simulation packages. The mathematical structure of the new discretization scheme is explored and described in detail. The performance of the proposed discretization procedure is evaluated by employing case studies. Various input signals, sampling rates, and time-delay values are considered to test the proposed method. The results demonstrate that the proposed discretization scheme is better than previous Taylor series method for nonlinear time-delay systems, especially when a large sampling period is inevitable.</description><identifier>ISSN: 1738-494X</identifier><identifier>EISSN: 1976-3824</identifier><identifier>DOI: 10.1007/s12206-010-0124-y</identifier><language>eng</language><publisher>Heidelberg: Korean Society of Mechanical Engineers</publisher><subject>Algorithms ; Applied sciences ; Computer science; control theory; systems ; Control ; Control theory. Systems ; Discretization ; Dynamical Systems ; Engineering ; Exact sciences and technology ; Industrial and Production Engineering ; Mathematical analysis ; Mathematical models ; Mechanical Engineering ; Packages ; Sampling ; System theory ; Taylor series ; Vibration ; 기계공학</subject><ispartof>Journal of Mechanical Science and Technology, 2010, 24(3), , pp.731-741</ispartof><rights>The Korean Society of Mechanical Engineers and Springer-Verlag Berlin Heidelberg 2010</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c412t-ce8579bb1b721827449a05a97443a167ca7699acfbe212d4ee07b28b2fc09f213</citedby><cites>FETCH-LOGICAL-c412t-ce8579bb1b721827449a05a97443a167ca7699acfbe212d4ee07b28b2fc09f213</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22476891$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART001424391$$DAccess content in National Research Foundation of Korea (NRF)$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Zheng</creatorcontrib><creatorcontrib>Kostyukova, Olga</creatorcontrib><creatorcontrib>Zhang, Yuanliang</creatorcontrib><creatorcontrib>Chong, Kil To</creatorcontrib><title>Hybrid discretization method for time-delay nonlinear systems</title><title>Journal of mechanical science and technology</title><addtitle>J Mech Sci Technol</addtitle><description>A hybrid discretization scheme that combines the virtues of the Taylor series and Matrix exponential integration methods is proposed. In the algorithm, each sampling time interval is divided into two subintervals to be considered according to the time delay and sampling period. The algorithm is not too expensive computationally and lends itself to be easily inserted into large simulation packages. The mathematical structure of the new discretization scheme is explored and described in detail. The performance of the proposed discretization procedure is evaluated by employing case studies. Various input signals, sampling rates, and time-delay values are considered to test the proposed method. The results demonstrate that the proposed discretization scheme is better than previous Taylor series method for nonlinear time-delay systems, especially when a large sampling period is inevitable.</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Control</subject><subject>Control theory. Systems</subject><subject>Discretization</subject><subject>Dynamical Systems</subject><subject>Engineering</subject><subject>Exact sciences and technology</subject><subject>Industrial and Production Engineering</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mechanical Engineering</subject><subject>Packages</subject><subject>Sampling</subject><subject>System theory</subject><subject>Taylor series</subject><subject>Vibration</subject><subject>기계공학</subject><issn>1738-494X</issn><issn>1976-3824</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLxTAQhYsoeH38AHdFEHRRzUxzk2bhQsQXCIIouAtpml6jbaJJ76L-enOtKAguhhmYb05yTpbtATkGQvhJBETCCgIkFdJiXMtmIDgrygrpepp5WRVU0KfNbCvGF0IYUoBZdno91sE2eWOjDmawH2qw3uW9GZ59k7c-5IPtTdGYTo25866zzqiQxzEOpo872Uarumh2v_t29nh58XB-XdzeXd2cn90WmgIOhTbVnIu6hpojVMgpFYrMlUhDqYBxrTgTQum2NgjYUGMIr7GqsdVEtAjldnY06brQyldtpVf2qy-8fA3y7P7hRgJhhFVlYg8n9i3496WJg-yTN9N1yhm_jBKQMT7nSOcJ3f-DvvhlcMmJrDgwyhFpgmCCdPAxBtPKt2B7Fcb0olxlL6fsZcperrKXY7o5-BZWUauuDcppG38OkyxnlVj5womLaeUWJvx-4H_xT4KPkok</recordid><startdate>20100301</startdate><enddate>20100301</enddate><creator>Zhang, Zheng</creator><creator>Kostyukova, Olga</creator><creator>Zhang, Yuanliang</creator><creator>Chong, Kil To</creator><general>Korean Society of Mechanical Engineers</general><general>Springer Nature B.V</general><general>대한기계학회</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>S0W</scope><scope>ACYCR</scope></search><sort><creationdate>20100301</creationdate><title>Hybrid discretization method for time-delay nonlinear systems</title><author>Zhang, Zheng ; Kostyukova, Olga ; Zhang, Yuanliang ; Chong, Kil To</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c412t-ce8579bb1b721827449a05a97443a167ca7699acfbe212d4ee07b28b2fc09f213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Control</topic><topic>Control theory. Systems</topic><topic>Discretization</topic><topic>Dynamical Systems</topic><topic>Engineering</topic><topic>Exact sciences and technology</topic><topic>Industrial and Production Engineering</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mechanical Engineering</topic><topic>Packages</topic><topic>Sampling</topic><topic>System theory</topic><topic>Taylor series</topic><topic>Vibration</topic><topic>기계공학</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Zheng</creatorcontrib><creatorcontrib>Kostyukova, Olga</creatorcontrib><creatorcontrib>Zhang, Yuanliang</creatorcontrib><creatorcontrib>Chong, Kil To</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>DELNET Engineering & Technology Collection</collection><collection>Korean Citation Index</collection><jtitle>Journal of mechanical science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Zheng</au><au>Kostyukova, Olga</au><au>Zhang, Yuanliang</au><au>Chong, Kil To</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hybrid discretization method for time-delay nonlinear systems</atitle><jtitle>Journal of mechanical science and technology</jtitle><stitle>J Mech Sci Technol</stitle><date>2010-03-01</date><risdate>2010</risdate><volume>24</volume><issue>3</issue><spage>731</spage><epage>741</epage><pages>731-741</pages><issn>1738-494X</issn><eissn>1976-3824</eissn><abstract>A hybrid discretization scheme that combines the virtues of the Taylor series and Matrix exponential integration methods is proposed. In the algorithm, each sampling time interval is divided into two subintervals to be considered according to the time delay and sampling period. The algorithm is not too expensive computationally and lends itself to be easily inserted into large simulation packages. The mathematical structure of the new discretization scheme is explored and described in detail. The performance of the proposed discretization procedure is evaluated by employing case studies. Various input signals, sampling rates, and time-delay values are considered to test the proposed method. The results demonstrate that the proposed discretization scheme is better than previous Taylor series method for nonlinear time-delay systems, especially when a large sampling period is inevitable.</abstract><cop>Heidelberg</cop><pub>Korean Society of Mechanical Engineers</pub><doi>10.1007/s12206-010-0124-y</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1738-494X |
ispartof | Journal of Mechanical Science and Technology, 2010, 24(3), , pp.731-741 |
issn | 1738-494X 1976-3824 |
language | eng |
recordid | cdi_nrf_kci_oai_kci_go_kr_ARTI_1060683 |
source | Springer Nature |
subjects | Algorithms Applied sciences Computer science control theory systems Control Control theory. Systems Discretization Dynamical Systems Engineering Exact sciences and technology Industrial and Production Engineering Mathematical analysis Mathematical models Mechanical Engineering Packages Sampling System theory Taylor series Vibration 기계공학 |
title | Hybrid discretization method for time-delay nonlinear systems |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T03%3A24%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_nrf_k&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hybrid%20discretization%20method%20for%20time-delay%20nonlinear%20systems&rft.jtitle=Journal%20of%20mechanical%20science%20and%20technology&rft.au=Zhang,%20Zheng&rft.date=2010-03-01&rft.volume=24&rft.issue=3&rft.spage=731&rft.epage=741&rft.pages=731-741&rft.issn=1738-494X&rft.eissn=1976-3824&rft_id=info:doi/10.1007/s12206-010-0124-y&rft_dat=%3Cproquest_nrf_k%3E2374184521%3C/proquest_nrf_k%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c412t-ce8579bb1b721827449a05a97443a167ca7699acfbe212d4ee07b28b2fc09f213%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=871647224&rft_id=info:pmid/&rfr_iscdi=true |