Loading…

Hybrid discretization method for time-delay nonlinear systems

A hybrid discretization scheme that combines the virtues of the Taylor series and Matrix exponential integration methods is proposed. In the algorithm, each sampling time interval is divided into two subintervals to be considered according to the time delay and sampling period. The algorithm is not...

Full description

Saved in:
Bibliographic Details
Published in:Journal of mechanical science and technology 2010, 24(3), , pp.731-741
Main Authors: Zhang, Zheng, Kostyukova, Olga, Zhang, Yuanliang, Chong, Kil To
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c412t-ce8579bb1b721827449a05a97443a167ca7699acfbe212d4ee07b28b2fc09f213
cites cdi_FETCH-LOGICAL-c412t-ce8579bb1b721827449a05a97443a167ca7699acfbe212d4ee07b28b2fc09f213
container_end_page 741
container_issue 3
container_start_page 731
container_title Journal of mechanical science and technology
container_volume 24
creator Zhang, Zheng
Kostyukova, Olga
Zhang, Yuanliang
Chong, Kil To
description A hybrid discretization scheme that combines the virtues of the Taylor series and Matrix exponential integration methods is proposed. In the algorithm, each sampling time interval is divided into two subintervals to be considered according to the time delay and sampling period. The algorithm is not too expensive computationally and lends itself to be easily inserted into large simulation packages. The mathematical structure of the new discretization scheme is explored and described in detail. The performance of the proposed discretization procedure is evaluated by employing case studies. Various input signals, sampling rates, and time-delay values are considered to test the proposed method. The results demonstrate that the proposed discretization scheme is better than previous Taylor series method for nonlinear time-delay systems, especially when a large sampling period is inevitable.
doi_str_mv 10.1007/s12206-010-0124-y
format article
fullrecord <record><control><sourceid>proquest_nrf_k</sourceid><recordid>TN_cdi_nrf_kci_oai_kci_go_kr_ARTI_1060683</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2374184521</sourcerecordid><originalsourceid>FETCH-LOGICAL-c412t-ce8579bb1b721827449a05a97443a167ca7699acfbe212d4ee07b28b2fc09f213</originalsourceid><addsrcrecordid>eNp1kEtLxTAQhYsoeH38AHdFEHRRzUxzk2bhQsQXCIIouAtpml6jbaJJ76L-enOtKAguhhmYb05yTpbtATkGQvhJBETCCgIkFdJiXMtmIDgrygrpepp5WRVU0KfNbCvGF0IYUoBZdno91sE2eWOjDmawH2qw3uW9GZ59k7c-5IPtTdGYTo25866zzqiQxzEOpo872Uarumh2v_t29nh58XB-XdzeXd2cn90WmgIOhTbVnIu6hpojVMgpFYrMlUhDqYBxrTgTQum2NgjYUGMIr7GqsdVEtAjldnY06brQyldtpVf2qy-8fA3y7P7hRgJhhFVlYg8n9i3496WJg-yTN9N1yhm_jBKQMT7nSOcJ3f-DvvhlcMmJrDgwyhFpgmCCdPAxBtPKt2B7Fcb0olxlL6fsZcperrKXY7o5-BZWUauuDcppG38OkyxnlVj5womLaeUWJvx-4H_xT4KPkok</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>871647224</pqid></control><display><type>article</type><title>Hybrid discretization method for time-delay nonlinear systems</title><source>Springer Nature</source><creator>Zhang, Zheng ; Kostyukova, Olga ; Zhang, Yuanliang ; Chong, Kil To</creator><creatorcontrib>Zhang, Zheng ; Kostyukova, Olga ; Zhang, Yuanliang ; Chong, Kil To</creatorcontrib><description>A hybrid discretization scheme that combines the virtues of the Taylor series and Matrix exponential integration methods is proposed. In the algorithm, each sampling time interval is divided into two subintervals to be considered according to the time delay and sampling period. The algorithm is not too expensive computationally and lends itself to be easily inserted into large simulation packages. The mathematical structure of the new discretization scheme is explored and described in detail. The performance of the proposed discretization procedure is evaluated by employing case studies. Various input signals, sampling rates, and time-delay values are considered to test the proposed method. The results demonstrate that the proposed discretization scheme is better than previous Taylor series method for nonlinear time-delay systems, especially when a large sampling period is inevitable.</description><identifier>ISSN: 1738-494X</identifier><identifier>EISSN: 1976-3824</identifier><identifier>DOI: 10.1007/s12206-010-0124-y</identifier><language>eng</language><publisher>Heidelberg: Korean Society of Mechanical Engineers</publisher><subject>Algorithms ; Applied sciences ; Computer science; control theory; systems ; Control ; Control theory. Systems ; Discretization ; Dynamical Systems ; Engineering ; Exact sciences and technology ; Industrial and Production Engineering ; Mathematical analysis ; Mathematical models ; Mechanical Engineering ; Packages ; Sampling ; System theory ; Taylor series ; Vibration ; 기계공학</subject><ispartof>Journal of Mechanical Science and Technology, 2010, 24(3), , pp.731-741</ispartof><rights>The Korean Society of Mechanical Engineers and Springer-Verlag Berlin Heidelberg 2010</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c412t-ce8579bb1b721827449a05a97443a167ca7699acfbe212d4ee07b28b2fc09f213</citedby><cites>FETCH-LOGICAL-c412t-ce8579bb1b721827449a05a97443a167ca7699acfbe212d4ee07b28b2fc09f213</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22476891$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART001424391$$DAccess content in National Research Foundation of Korea (NRF)$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Zheng</creatorcontrib><creatorcontrib>Kostyukova, Olga</creatorcontrib><creatorcontrib>Zhang, Yuanliang</creatorcontrib><creatorcontrib>Chong, Kil To</creatorcontrib><title>Hybrid discretization method for time-delay nonlinear systems</title><title>Journal of mechanical science and technology</title><addtitle>J Mech Sci Technol</addtitle><description>A hybrid discretization scheme that combines the virtues of the Taylor series and Matrix exponential integration methods is proposed. In the algorithm, each sampling time interval is divided into two subintervals to be considered according to the time delay and sampling period. The algorithm is not too expensive computationally and lends itself to be easily inserted into large simulation packages. The mathematical structure of the new discretization scheme is explored and described in detail. The performance of the proposed discretization procedure is evaluated by employing case studies. Various input signals, sampling rates, and time-delay values are considered to test the proposed method. The results demonstrate that the proposed discretization scheme is better than previous Taylor series method for nonlinear time-delay systems, especially when a large sampling period is inevitable.</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Control</subject><subject>Control theory. Systems</subject><subject>Discretization</subject><subject>Dynamical Systems</subject><subject>Engineering</subject><subject>Exact sciences and technology</subject><subject>Industrial and Production Engineering</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mechanical Engineering</subject><subject>Packages</subject><subject>Sampling</subject><subject>System theory</subject><subject>Taylor series</subject><subject>Vibration</subject><subject>기계공학</subject><issn>1738-494X</issn><issn>1976-3824</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLxTAQhYsoeH38AHdFEHRRzUxzk2bhQsQXCIIouAtpml6jbaJJ76L-enOtKAguhhmYb05yTpbtATkGQvhJBETCCgIkFdJiXMtmIDgrygrpepp5WRVU0KfNbCvGF0IYUoBZdno91sE2eWOjDmawH2qw3uW9GZ59k7c-5IPtTdGYTo25866zzqiQxzEOpo872Uarumh2v_t29nh58XB-XdzeXd2cn90WmgIOhTbVnIu6hpojVMgpFYrMlUhDqYBxrTgTQum2NgjYUGMIr7GqsdVEtAjldnY06brQyldtpVf2qy-8fA3y7P7hRgJhhFVlYg8n9i3496WJg-yTN9N1yhm_jBKQMT7nSOcJ3f-DvvhlcMmJrDgwyhFpgmCCdPAxBtPKt2B7Fcb0olxlL6fsZcperrKXY7o5-BZWUauuDcppG38OkyxnlVj5womLaeUWJvx-4H_xT4KPkok</recordid><startdate>20100301</startdate><enddate>20100301</enddate><creator>Zhang, Zheng</creator><creator>Kostyukova, Olga</creator><creator>Zhang, Yuanliang</creator><creator>Chong, Kil To</creator><general>Korean Society of Mechanical Engineers</general><general>Springer Nature B.V</general><general>대한기계학회</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>S0W</scope><scope>ACYCR</scope></search><sort><creationdate>20100301</creationdate><title>Hybrid discretization method for time-delay nonlinear systems</title><author>Zhang, Zheng ; Kostyukova, Olga ; Zhang, Yuanliang ; Chong, Kil To</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c412t-ce8579bb1b721827449a05a97443a167ca7699acfbe212d4ee07b28b2fc09f213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Control</topic><topic>Control theory. Systems</topic><topic>Discretization</topic><topic>Dynamical Systems</topic><topic>Engineering</topic><topic>Exact sciences and technology</topic><topic>Industrial and Production Engineering</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mechanical Engineering</topic><topic>Packages</topic><topic>Sampling</topic><topic>System theory</topic><topic>Taylor series</topic><topic>Vibration</topic><topic>기계공학</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Zheng</creatorcontrib><creatorcontrib>Kostyukova, Olga</creatorcontrib><creatorcontrib>Zhang, Yuanliang</creatorcontrib><creatorcontrib>Chong, Kil To</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>DELNET Engineering &amp; Technology Collection</collection><collection>Korean Citation Index</collection><jtitle>Journal of mechanical science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Zheng</au><au>Kostyukova, Olga</au><au>Zhang, Yuanliang</au><au>Chong, Kil To</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hybrid discretization method for time-delay nonlinear systems</atitle><jtitle>Journal of mechanical science and technology</jtitle><stitle>J Mech Sci Technol</stitle><date>2010-03-01</date><risdate>2010</risdate><volume>24</volume><issue>3</issue><spage>731</spage><epage>741</epage><pages>731-741</pages><issn>1738-494X</issn><eissn>1976-3824</eissn><abstract>A hybrid discretization scheme that combines the virtues of the Taylor series and Matrix exponential integration methods is proposed. In the algorithm, each sampling time interval is divided into two subintervals to be considered according to the time delay and sampling period. The algorithm is not too expensive computationally and lends itself to be easily inserted into large simulation packages. The mathematical structure of the new discretization scheme is explored and described in detail. The performance of the proposed discretization procedure is evaluated by employing case studies. Various input signals, sampling rates, and time-delay values are considered to test the proposed method. The results demonstrate that the proposed discretization scheme is better than previous Taylor series method for nonlinear time-delay systems, especially when a large sampling period is inevitable.</abstract><cop>Heidelberg</cop><pub>Korean Society of Mechanical Engineers</pub><doi>10.1007/s12206-010-0124-y</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1738-494X
ispartof Journal of Mechanical Science and Technology, 2010, 24(3), , pp.731-741
issn 1738-494X
1976-3824
language eng
recordid cdi_nrf_kci_oai_kci_go_kr_ARTI_1060683
source Springer Nature
subjects Algorithms
Applied sciences
Computer science
control theory
systems
Control
Control theory. Systems
Discretization
Dynamical Systems
Engineering
Exact sciences and technology
Industrial and Production Engineering
Mathematical analysis
Mathematical models
Mechanical Engineering
Packages
Sampling
System theory
Taylor series
Vibration
기계공학
title Hybrid discretization method for time-delay nonlinear systems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T03%3A24%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_nrf_k&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hybrid%20discretization%20method%20for%20time-delay%20nonlinear%20systems&rft.jtitle=Journal%20of%20mechanical%20science%20and%20technology&rft.au=Zhang,%20Zheng&rft.date=2010-03-01&rft.volume=24&rft.issue=3&rft.spage=731&rft.epage=741&rft.pages=731-741&rft.issn=1738-494X&rft.eissn=1976-3824&rft_id=info:doi/10.1007/s12206-010-0124-y&rft_dat=%3Cproquest_nrf_k%3E2374184521%3C/proquest_nrf_k%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c412t-ce8579bb1b721827449a05a97443a167ca7699acfbe212d4ee07b28b2fc09f213%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=871647224&rft_id=info:pmid/&rfr_iscdi=true