Loading…
Synthetic analysis of flexible multibody system including a very flexible body
The progress in developing a dynamic analysis solver has different aspects of improvement in the sense of simulating the behavior of the parts. Among them, dynamics in flexible body and large deformable body have been an issue in recent decades. A modal coordinate formulation has been developed and...
Saved in:
Published in: | Journal of mechanical science and technology 2009, 23(4), , pp.942-945 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The progress in developing a dynamic analysis solver has different aspects of improvement in the sense of simulating the behavior of the parts. Among them, dynamics in flexible body and large deformable body have been an issue in recent decades. A modal coordinate formulation has been developed and used for analyzing the flexible body dynamics with a commercial dynamic solver, like in ADAMS. Flexible body dynamics using modal coordinates are reliable when the system’s deflection is relatively small, and generally its accuracy depends on how many relevant modes are used for the system. Conversely, to simulate the behavior of the large deflected body, absolute nodal coordinate formulation is derived and developed. The theory presents the mixed equations of motion, which consider both the absolute nodal coordinates and absolute cartesian orientation coordinates to simulate the large deflection. Its reliability is proved by many researches and experimental data. In this study, a dynamic solver which can handle the flexible bodies is developed. Three kinds of bodies, rigid, flexible and large deformable body, can be simulated. Its validity is verified by comparison with a commercial analysis program. For further studies, the constraints and force elements between different coordinates will be developed. Solving efficiency would be another major concern to be improved. |
---|---|
ISSN: | 1738-494X 1976-3824 |
DOI: | 10.1007/s12206-009-0317-4 |