Loading…
Development of a patient positioning error compensation tool for Korea Heavy-Ion Medical Accelerator Treatment Center
In this study, a potential validation tool for compensating for the patient positioning error was developed by using 2D/3D and 3D/3D image registration. For 2D/3D registration, digitallyreconstructed radiography (DRR) and three-dimensional computed tomography (3D-CT) images were applied. The ray-cas...
Saved in:
Published in: | Journal of the Korean Physical Society 2015, 67(1), , pp.204-208 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this study, a potential validation tool for compensating for the patient positioning error was developed by using 2D/3D and 3D/3D image registration. For 2D/3D registration, digitallyreconstructed radiography (DRR) and three-dimensional computed tomography (3D-CT) images were applied. The ray-casting algorithm is the most straightforward method for generating DRR, so we adopted the traditional ray-casting method, which finds the intersections of a ray with all objects, voxels of the 3D-CT volume in the scene. The similarity between the extracted DRR and the orthogonal image was measured by using a normalized mutual information method. Two orthogonal images were acquired from a Cyber-knife system from the anterior-posterior (AP) and right lateral (RL) views. The 3D-CT and the two orthogonal images of an anthropomorphic phantom and of the head and neck of a cancer patient were used in this study. For 3D/3D registration, planning CT and in-room CT images were applied. After registration, the translation and the rotation factors were calculated to position a couch to be movable in six dimensions. Registration accuracies and average errors of 2.12 mm ± 0.50 mm for transformations and 1.23 ° ± 0.40 ° for rotations were acquired by using 2D/3D registration with the anthropomorphic Alderson-Rando phantom. In addition, registration accuracies and average errors of 0.90 mm ± 0.30 mm for transformations and 1.00 ° ± 0.2 ° for rotations were acquired by using CT image sets. We demonstrated that this validation tool could compensate for patient positioning errors. In addition, this research could be a fundamental step in compensating for patient positioning errors at the Korea Heavy-ion Medical Accelerator Treatment Center. |
---|---|
ISSN: | 0374-4884 1976-8524 |
DOI: | 10.3938/jkps.67.204 |