Loading…

Dispersion-Based Continuous Wavelet Transform for the Analysis of Elastic Waves

The continuous wavelet transform (CWT) has a frequency-adaptive time-frequency tiling property, which makes it popular for the analysis of dispersive elastic wave signals. However, because the time-frequency tiling of CWT is not signal-dependent, it still has some limitations in the analysis of elas...

Full description

Saved in:
Bibliographic Details
Published in:Journal of mechanical science and technology 2006, 20(12), , pp.2147-2158
Main Authors: KYUNG HO SUN, HONG, Jin-Chul, YOON YOUNG KIM
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The continuous wavelet transform (CWT) has a frequency-adaptive time-frequency tiling property, which makes it popular for the analysis of dispersive elastic wave signals. However, because the time-frequency tiling of CWT is not signal-dependent, it still has some limitations in the analysis of elastic waves with spectral components that are dispersed rapidly in time. The objective of this paper is to introduce an advanced time-frequency analysis method, called the dispersion-based continuous wavelet transform (D-CWT) whose time-frequency tiling is adaptively varied according to the dispersion relation of the waves to be analyzed. In the D-CWT method, time-frequency tiling can have frequency-adaptive characteristics like CWT and adaptively rotate in the time-frequency plane depending on the local wave dispersion. Therefore, D-CWT provides higher time-frequency localization than the conventional CWT. In this work, D-CWT method is applied to the analysis of dispersive elastic waves measured in waveguide experiments and an efficient procedure to extract information on the dispersion relation hidden in a wave signal is presented. In addition, the ridge property of the present transform is investigated theoretically to show its effectiveness in analyzing highly time-varying signals. Numerical simulations and experimental results are presented to show the effectiveness of the present method.[PUBLICATION ABSTRACT]
ISSN:1738-494X
1976-3824
DOI:10.1007/BF02916331