Loading…
Application of wavelet transform in anti-Compton phoswich detector for gamma spectrum
The response of an anti-Compton phoswich detector to gamma rays was investigated using Monte-Carlo method, and the pulses from different crystal cases, including gamma deposition only in the LaBr3(Ce) or CsI(Tl) crystal and coincidence in both crystals, were analyzed. A novel pulse discrimination me...
Saved in:
Published in: | Nuclear engineering and technology 2024, 56(10), , pp.4390-4396 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The response of an anti-Compton phoswich detector to gamma rays was investigated using Monte-Carlo method, and the pulses from different crystal cases, including gamma deposition only in the LaBr3(Ce) or CsI(Tl) crystal and coincidence in both crystals, were analyzed. A novel pulse discrimination method for gamma deposition events based on wavelet transform analysis, called SSD (Scale Shape Discrimination), was developed in this study. Compared to the traditional PSD (Pulse Shape Discrimination) method, SSD has the advantage of transforming one-dimensional pulses in the time-domain into two-dimensional time-frequency spectra, providing the more useful features for pulse discrimination. The performances of the Compton suppression and Full-energy peak loss using PSD and SSD methods was studied. The results show that the Compton suppression factor IPSD = 5.12 and ISSD = 5.32, and FEP loss factor PLPSD = 0.0554 and PLSSD = 0.0587. Meanwhile, the influences of the cutoff values for pulse discrimination on the results of I and PL with different method were analyzed. |
---|---|
ISSN: | 1738-5733 2234-358X |
DOI: | 10.1016/j.net.2024.05.044 |