Loading…

In vitro antibacterial, antioxidant, in silico molecular docking and ADEMT analysis of chemical constituents from the roots of Acokanthera schimperi and Rhus glutinosa

Acokanthera schimperi is a medicinal plant traditionally used for the treatment of wounds, scabies, and malaria. Rhus glutinosa has been also utilized for the management of ectoparasites and hemorrhoids. Silica gel column chromatography separation of CH 2 Cl 2 /MeOH (1:1) extract root of A. schimper...

Full description

Saved in:
Bibliographic Details
Published in:Applied biological chemistry 2024, 67(0), , pp.1-16
Main Authors: Abera, Bihon, Melaku, Yadessa, Shenkute, Kebede, Dekebo, Aman, Abdissa, Negera, Endale, Milkyas, Negassa, Temesgen, Woldemariam, Messay, Hunsen, Mo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c345t-20b232ac9ff24edacde12e9beae33fbd5b8d50a001194d5fbf62b0d2c8ce0b243
container_end_page 16
container_issue 1
container_start_page 77
container_title Applied biological chemistry
container_volume 67
creator Abera, Bihon
Melaku, Yadessa
Shenkute, Kebede
Dekebo, Aman
Abdissa, Negera
Endale, Milkyas
Negassa, Temesgen
Woldemariam, Messay
Hunsen, Mo
description Acokanthera schimperi is a medicinal plant traditionally used for the treatment of wounds, scabies, and malaria. Rhus glutinosa has been also utilized for the management of ectoparasites and hemorrhoids. Silica gel column chromatography separation of CH 2 Cl 2 /MeOH (1:1) extract root of A. schimperi afforded oleic acid ( 1 ), lupeol ( 2 ), dihydroferulic acid ( 3 ), acovenosigenin A- 3-O-α-L-rhamnopyranoside ( 4 ) and sucrose ( 5 ) whereas CH 2 Cl 2 / MeOH (1:1) and MeOH roots extracts of R. glutinosa afforded β-sitosterol ( 6 ), (E)-5-(heptadec-14-en-1-yl)-4,5-dihydroxycyclohex-2-enone ( 7 ), methyl gallate ( 8 ), and gallic acid ( 9 ). The structures of the compounds were established using spectroscopic (1D and 2D NMR) and FT-IR techniques. Disc diffusin and DPPH assay were used, respectively, to evaluate the antibacterial and antioxidant potential of the extracts and isolated compounds. MeOH extract root of A. schimperi showed a modest antibacterial effect against E.coli with an inhibition zone (ZI) of 16 ± 0.0 mm compared to ciprofloxacin (ZI of 27.0 ± 0.0 mm). CH 2 Cl 2 /MeOH (1:1) and MeOH root extracts of R. glutinosa showed maximum activity against S. aureus with ZI of 17.3 ± 0.04 and 18.0 ± 0.0 mm, respectively. At 5 mg/mL, the highest activity was noted against S. aureus by 8 with ZI of 18.6 ± 0.08 mm. Dihydroferulic acid ( 3 ), methyl gallate ( 8 ), and gallic acid ( 9 ) displayed potent scavenging of DPPH radical with respective IC 50 of 10.66, 7.48, and 6.08 µg/mL, compared with ascorbic acid (IC 50 of 5.83 µg/mL). Molecular docking results showed that lupeol ( 2 ) exhibited strong binding energy of -7.7 and − 10 kcal/mol towards PDB ID: 4F86 and PDB ID: 3T07, respectively, compared to ciprofloxacin (-6.5 and − 7.2 kcal/mole). Towards PDB ID: 1DNU receptor, compounds 3 , 8 , and 9 showed minimum binding energy of -5.1, -4.8, and − 4.9 kcal/mol, respectively, compared to ascorbic acid (-5.7 kcal/mol). The Swiss ADME prediction results indicated that compounds 2 , 3 , 8 , and 9 obeyed the Lipinksi rule of five and Veber rule with 0 violations. The in vitro antibacterial and antioxidant results supported by in silico analysis indicated that compounds 2 , 3 , 8 , and 9 can potentially be lead candidates for the treatment of pathogenic and free radical-induced disorders.
doi_str_mv 10.1186/s13765-024-00930-6
format article
fullrecord <record><control><sourceid>proquest_nrf_k</sourceid><recordid>TN_cdi_nrf_kci_oai_kci_go_kr_ARTI_10621075</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_c995bf5093534ea687b8ad1c02549779</doaj_id><sourcerecordid>3099954679</sourcerecordid><originalsourceid>FETCH-LOGICAL-c345t-20b232ac9ff24edacde12e9beae33fbd5b8d50a001194d5fbf62b0d2c8ce0b243</originalsourceid><addsrcrecordid>eNp9ks1u1DAUhSMEElXpC7CyxA411P9JlqNSYKQipGpYW45_Es848WA7iD4Rr4mbIGDF6l5ffedc6fpU1WsE3yHU8puESMNZDTGtIewIrPmz6gJT3tawpfj5P_3L6iqlI4QQ8ZZjRi6qn_sZfHc5BiDn7HqpsolO-uv1GX44Xeo1cDNIzjsVwBS8UYuXEeigTm4eCqjB7v3d50PppH9MLoFggRrN5JT0QIU5ZZcXM-cEbAwTyKMBMYS8cjsVTmXFaKIESY1uOpf9q-fDuCQw-CW7OST5qnphpU_m6ne9rL5-uDvcfqrvv3zc3-7ua0UoyzWGPSZYqs5aTI2WShuETdcbaQixvWZ9qxmU5QCoo5rZ3nLcQ41Vq0yRUnJZvd1852jFSTkRpFvrEMQpit3DYS8Q5BjBhhV4v8E6yKM4RzfJ-Lgq1kGIg5AxO-WNUF3HesvK9zBCjeRt07dSIwUxo13TdMXrzeZ1juHbYlIWx7DEctEkCOyKmvKVwhulYkgpGvtnK4LiKQxiC4MoYRBrGAQvIrKJUoHnwcS_1v9R_QL1LLm2</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3099954679</pqid></control><display><type>article</type><title>In vitro antibacterial, antioxidant, in silico molecular docking and ADEMT analysis of chemical constituents from the roots of Acokanthera schimperi and Rhus glutinosa</title><source>Springer Nature - SpringerLink Journals - Fully Open Access</source><source>Publicly Available Content (ProQuest)</source><source>Coronavirus Research Database</source><creator>Abera, Bihon ; Melaku, Yadessa ; Shenkute, Kebede ; Dekebo, Aman ; Abdissa, Negera ; Endale, Milkyas ; Negassa, Temesgen ; Woldemariam, Messay ; Hunsen, Mo</creator><creatorcontrib>Abera, Bihon ; Melaku, Yadessa ; Shenkute, Kebede ; Dekebo, Aman ; Abdissa, Negera ; Endale, Milkyas ; Negassa, Temesgen ; Woldemariam, Messay ; Hunsen, Mo</creatorcontrib><description>Acokanthera schimperi is a medicinal plant traditionally used for the treatment of wounds, scabies, and malaria. Rhus glutinosa has been also utilized for the management of ectoparasites and hemorrhoids. Silica gel column chromatography separation of CH 2 Cl 2 /MeOH (1:1) extract root of A. schimperi afforded oleic acid ( 1 ), lupeol ( 2 ), dihydroferulic acid ( 3 ), acovenosigenin A- 3-O-α-L-rhamnopyranoside ( 4 ) and sucrose ( 5 ) whereas CH 2 Cl 2 / MeOH (1:1) and MeOH roots extracts of R. glutinosa afforded β-sitosterol ( 6 ), (E)-5-(heptadec-14-en-1-yl)-4,5-dihydroxycyclohex-2-enone ( 7 ), methyl gallate ( 8 ), and gallic acid ( 9 ). The structures of the compounds were established using spectroscopic (1D and 2D NMR) and FT-IR techniques. Disc diffusin and DPPH assay were used, respectively, to evaluate the antibacterial and antioxidant potential of the extracts and isolated compounds. MeOH extract root of A. schimperi showed a modest antibacterial effect against E.coli with an inhibition zone (ZI) of 16 ± 0.0 mm compared to ciprofloxacin (ZI of 27.0 ± 0.0 mm). CH 2 Cl 2 /MeOH (1:1) and MeOH root extracts of R. glutinosa showed maximum activity against S. aureus with ZI of 17.3 ± 0.04 and 18.0 ± 0.0 mm, respectively. At 5 mg/mL, the highest activity was noted against S. aureus by 8 with ZI of 18.6 ± 0.08 mm. Dihydroferulic acid ( 3 ), methyl gallate ( 8 ), and gallic acid ( 9 ) displayed potent scavenging of DPPH radical with respective IC 50 of 10.66, 7.48, and 6.08 µg/mL, compared with ascorbic acid (IC 50 of 5.83 µg/mL). Molecular docking results showed that lupeol ( 2 ) exhibited strong binding energy of -7.7 and − 10 kcal/mol towards PDB ID: 4F86 and PDB ID: 3T07, respectively, compared to ciprofloxacin (-6.5 and − 7.2 kcal/mole). Towards PDB ID: 1DNU receptor, compounds 3 , 8 , and 9 showed minimum binding energy of -5.1, -4.8, and − 4.9 kcal/mol, respectively, compared to ascorbic acid (-5.7 kcal/mol). The Swiss ADME prediction results indicated that compounds 2 , 3 , 8 , and 9 obeyed the Lipinksi rule of five and Veber rule with 0 violations. The in vitro antibacterial and antioxidant results supported by in silico analysis indicated that compounds 2 , 3 , 8 , and 9 can potentially be lead candidates for the treatment of pathogenic and free radical-induced disorders.</description><identifier>ISSN: 2468-0842</identifier><identifier>ISSN: 2468-0834</identifier><identifier>EISSN: 2468-0842</identifier><identifier>DOI: 10.1186/s13765-024-00930-6</identifier><language>eng</language><publisher>Singapore: Springer Nature Singapore</publisher><subject>Acids ; Acokanthera schimperi ; Antibacterial ; Antibacterial activity ; Antiinfectives and antibacterials ; Antioxidant ; Antioxidants ; Applied Microbiology ; Ascorbic acid ; Binding energy ; Biological Techniques ; Bioorganic Chemistry ; Chemistry ; Chemistry and Materials Science ; Ciprofloxacin ; Column chromatography ; Dichloromethane ; E coli ; Ectoparasites ; Free radicals ; Gallic acid ; Hemorrhoids ; Herbal medicine ; L-Rhamnopyranoside ; Malaria ; Medicinal plants ; Molecular docking ; NMR ; Nuclear magnetic resonance ; Oleic acid ; Rhus glutinosa ; Roots ; Scabies ; Scavenging ; Silica ; Silica gel ; Sucrose ; Thermodynamics ; Vector-borne diseases ; 농학</subject><ispartof>Applied Biological Chemistry, 2024, 67(0), , pp.1-16</ispartof><rights>The Author(s) 2024</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c345t-20b232ac9ff24edacde12e9beae33fbd5b8d50a001194d5fbf62b0d2c8ce0b243</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/3099954679?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,38516,43895,44590</link.rule.ids><backlink>$$Uhttps://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003114210$$DAccess content in National Research Foundation of Korea (NRF)$$Hfree_for_read</backlink></links><search><creatorcontrib>Abera, Bihon</creatorcontrib><creatorcontrib>Melaku, Yadessa</creatorcontrib><creatorcontrib>Shenkute, Kebede</creatorcontrib><creatorcontrib>Dekebo, Aman</creatorcontrib><creatorcontrib>Abdissa, Negera</creatorcontrib><creatorcontrib>Endale, Milkyas</creatorcontrib><creatorcontrib>Negassa, Temesgen</creatorcontrib><creatorcontrib>Woldemariam, Messay</creatorcontrib><creatorcontrib>Hunsen, Mo</creatorcontrib><title>In vitro antibacterial, antioxidant, in silico molecular docking and ADEMT analysis of chemical constituents from the roots of Acokanthera schimperi and Rhus glutinosa</title><title>Applied biological chemistry</title><addtitle>Appl Biol Chem</addtitle><description>Acokanthera schimperi is a medicinal plant traditionally used for the treatment of wounds, scabies, and malaria. Rhus glutinosa has been also utilized for the management of ectoparasites and hemorrhoids. Silica gel column chromatography separation of CH 2 Cl 2 /MeOH (1:1) extract root of A. schimperi afforded oleic acid ( 1 ), lupeol ( 2 ), dihydroferulic acid ( 3 ), acovenosigenin A- 3-O-α-L-rhamnopyranoside ( 4 ) and sucrose ( 5 ) whereas CH 2 Cl 2 / MeOH (1:1) and MeOH roots extracts of R. glutinosa afforded β-sitosterol ( 6 ), (E)-5-(heptadec-14-en-1-yl)-4,5-dihydroxycyclohex-2-enone ( 7 ), methyl gallate ( 8 ), and gallic acid ( 9 ). The structures of the compounds were established using spectroscopic (1D and 2D NMR) and FT-IR techniques. Disc diffusin and DPPH assay were used, respectively, to evaluate the antibacterial and antioxidant potential of the extracts and isolated compounds. MeOH extract root of A. schimperi showed a modest antibacterial effect against E.coli with an inhibition zone (ZI) of 16 ± 0.0 mm compared to ciprofloxacin (ZI of 27.0 ± 0.0 mm). CH 2 Cl 2 /MeOH (1:1) and MeOH root extracts of R. glutinosa showed maximum activity against S. aureus with ZI of 17.3 ± 0.04 and 18.0 ± 0.0 mm, respectively. At 5 mg/mL, the highest activity was noted against S. aureus by 8 with ZI of 18.6 ± 0.08 mm. Dihydroferulic acid ( 3 ), methyl gallate ( 8 ), and gallic acid ( 9 ) displayed potent scavenging of DPPH radical with respective IC 50 of 10.66, 7.48, and 6.08 µg/mL, compared with ascorbic acid (IC 50 of 5.83 µg/mL). Molecular docking results showed that lupeol ( 2 ) exhibited strong binding energy of -7.7 and − 10 kcal/mol towards PDB ID: 4F86 and PDB ID: 3T07, respectively, compared to ciprofloxacin (-6.5 and − 7.2 kcal/mole). Towards PDB ID: 1DNU receptor, compounds 3 , 8 , and 9 showed minimum binding energy of -5.1, -4.8, and − 4.9 kcal/mol, respectively, compared to ascorbic acid (-5.7 kcal/mol). The Swiss ADME prediction results indicated that compounds 2 , 3 , 8 , and 9 obeyed the Lipinksi rule of five and Veber rule with 0 violations. The in vitro antibacterial and antioxidant results supported by in silico analysis indicated that compounds 2 , 3 , 8 , and 9 can potentially be lead candidates for the treatment of pathogenic and free radical-induced disorders.</description><subject>Acids</subject><subject>Acokanthera schimperi</subject><subject>Antibacterial</subject><subject>Antibacterial activity</subject><subject>Antiinfectives and antibacterials</subject><subject>Antioxidant</subject><subject>Antioxidants</subject><subject>Applied Microbiology</subject><subject>Ascorbic acid</subject><subject>Binding energy</subject><subject>Biological Techniques</subject><subject>Bioorganic Chemistry</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Ciprofloxacin</subject><subject>Column chromatography</subject><subject>Dichloromethane</subject><subject>E coli</subject><subject>Ectoparasites</subject><subject>Free radicals</subject><subject>Gallic acid</subject><subject>Hemorrhoids</subject><subject>Herbal medicine</subject><subject>L-Rhamnopyranoside</subject><subject>Malaria</subject><subject>Medicinal plants</subject><subject>Molecular docking</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Oleic acid</subject><subject>Rhus glutinosa</subject><subject>Roots</subject><subject>Scabies</subject><subject>Scavenging</subject><subject>Silica</subject><subject>Silica gel</subject><subject>Sucrose</subject><subject>Thermodynamics</subject><subject>Vector-borne diseases</subject><subject>농학</subject><issn>2468-0842</issn><issn>2468-0834</issn><issn>2468-0842</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>COVID</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9ks1u1DAUhSMEElXpC7CyxA411P9JlqNSYKQipGpYW45_Es848WA7iD4Rr4mbIGDF6l5ffedc6fpU1WsE3yHU8puESMNZDTGtIewIrPmz6gJT3tawpfj5P_3L6iqlI4QQ8ZZjRi6qn_sZfHc5BiDn7HqpsolO-uv1GX44Xeo1cDNIzjsVwBS8UYuXEeigTm4eCqjB7v3d50PppH9MLoFggRrN5JT0QIU5ZZcXM-cEbAwTyKMBMYS8cjsVTmXFaKIESY1uOpf9q-fDuCQw-CW7OST5qnphpU_m6ne9rL5-uDvcfqrvv3zc3-7ua0UoyzWGPSZYqs5aTI2WShuETdcbaQixvWZ9qxmU5QCoo5rZ3nLcQ41Vq0yRUnJZvd1852jFSTkRpFvrEMQpit3DYS8Q5BjBhhV4v8E6yKM4RzfJ-Lgq1kGIg5AxO-WNUF3HesvK9zBCjeRt07dSIwUxo13TdMXrzeZ1juHbYlIWx7DEctEkCOyKmvKVwhulYkgpGvtnK4LiKQxiC4MoYRBrGAQvIrKJUoHnwcS_1v9R_QL1LLm2</recordid><startdate>20240902</startdate><enddate>20240902</enddate><creator>Abera, Bihon</creator><creator>Melaku, Yadessa</creator><creator>Shenkute, Kebede</creator><creator>Dekebo, Aman</creator><creator>Abdissa, Negera</creator><creator>Endale, Milkyas</creator><creator>Negassa, Temesgen</creator><creator>Woldemariam, Messay</creator><creator>Hunsen, Mo</creator><general>Springer Nature Singapore</general><general>Springer Nature B.V</general><general>SpringerOpen</general><general>한국응용생명화학회</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X2</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>COVID</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M0K</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><scope>ACYCR</scope></search><sort><creationdate>20240902</creationdate><title>In vitro antibacterial, antioxidant, in silico molecular docking and ADEMT analysis of chemical constituents from the roots of Acokanthera schimperi and Rhus glutinosa</title><author>Abera, Bihon ; Melaku, Yadessa ; Shenkute, Kebede ; Dekebo, Aman ; Abdissa, Negera ; Endale, Milkyas ; Negassa, Temesgen ; Woldemariam, Messay ; Hunsen, Mo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c345t-20b232ac9ff24edacde12e9beae33fbd5b8d50a001194d5fbf62b0d2c8ce0b243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Acids</topic><topic>Acokanthera schimperi</topic><topic>Antibacterial</topic><topic>Antibacterial activity</topic><topic>Antiinfectives and antibacterials</topic><topic>Antioxidant</topic><topic>Antioxidants</topic><topic>Applied Microbiology</topic><topic>Ascorbic acid</topic><topic>Binding energy</topic><topic>Biological Techniques</topic><topic>Bioorganic Chemistry</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Ciprofloxacin</topic><topic>Column chromatography</topic><topic>Dichloromethane</topic><topic>E coli</topic><topic>Ectoparasites</topic><topic>Free radicals</topic><topic>Gallic acid</topic><topic>Hemorrhoids</topic><topic>Herbal medicine</topic><topic>L-Rhamnopyranoside</topic><topic>Malaria</topic><topic>Medicinal plants</topic><topic>Molecular docking</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Oleic acid</topic><topic>Rhus glutinosa</topic><topic>Roots</topic><topic>Scabies</topic><topic>Scavenging</topic><topic>Silica</topic><topic>Silica gel</topic><topic>Sucrose</topic><topic>Thermodynamics</topic><topic>Vector-borne diseases</topic><topic>농학</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abera, Bihon</creatorcontrib><creatorcontrib>Melaku, Yadessa</creatorcontrib><creatorcontrib>Shenkute, Kebede</creatorcontrib><creatorcontrib>Dekebo, Aman</creatorcontrib><creatorcontrib>Abdissa, Negera</creatorcontrib><creatorcontrib>Endale, Milkyas</creatorcontrib><creatorcontrib>Negassa, Temesgen</creatorcontrib><creatorcontrib>Woldemariam, Messay</creatorcontrib><creatorcontrib>Hunsen, Mo</creatorcontrib><collection>Springer Open Access</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Biological Sciences</collection><collection>Agriculture Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><collection>Korean Citation Index</collection><jtitle>Applied biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abera, Bihon</au><au>Melaku, Yadessa</au><au>Shenkute, Kebede</au><au>Dekebo, Aman</au><au>Abdissa, Negera</au><au>Endale, Milkyas</au><au>Negassa, Temesgen</au><au>Woldemariam, Messay</au><au>Hunsen, Mo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In vitro antibacterial, antioxidant, in silico molecular docking and ADEMT analysis of chemical constituents from the roots of Acokanthera schimperi and Rhus glutinosa</atitle><jtitle>Applied biological chemistry</jtitle><stitle>Appl Biol Chem</stitle><date>2024-09-02</date><risdate>2024</risdate><volume>67</volume><issue>1</issue><spage>77</spage><epage>16</epage><pages>77-16</pages><artnum>77</artnum><issn>2468-0842</issn><issn>2468-0834</issn><eissn>2468-0842</eissn><abstract>Acokanthera schimperi is a medicinal plant traditionally used for the treatment of wounds, scabies, and malaria. Rhus glutinosa has been also utilized for the management of ectoparasites and hemorrhoids. Silica gel column chromatography separation of CH 2 Cl 2 /MeOH (1:1) extract root of A. schimperi afforded oleic acid ( 1 ), lupeol ( 2 ), dihydroferulic acid ( 3 ), acovenosigenin A- 3-O-α-L-rhamnopyranoside ( 4 ) and sucrose ( 5 ) whereas CH 2 Cl 2 / MeOH (1:1) and MeOH roots extracts of R. glutinosa afforded β-sitosterol ( 6 ), (E)-5-(heptadec-14-en-1-yl)-4,5-dihydroxycyclohex-2-enone ( 7 ), methyl gallate ( 8 ), and gallic acid ( 9 ). The structures of the compounds were established using spectroscopic (1D and 2D NMR) and FT-IR techniques. Disc diffusin and DPPH assay were used, respectively, to evaluate the antibacterial and antioxidant potential of the extracts and isolated compounds. MeOH extract root of A. schimperi showed a modest antibacterial effect against E.coli with an inhibition zone (ZI) of 16 ± 0.0 mm compared to ciprofloxacin (ZI of 27.0 ± 0.0 mm). CH 2 Cl 2 /MeOH (1:1) and MeOH root extracts of R. glutinosa showed maximum activity against S. aureus with ZI of 17.3 ± 0.04 and 18.0 ± 0.0 mm, respectively. At 5 mg/mL, the highest activity was noted against S. aureus by 8 with ZI of 18.6 ± 0.08 mm. Dihydroferulic acid ( 3 ), methyl gallate ( 8 ), and gallic acid ( 9 ) displayed potent scavenging of DPPH radical with respective IC 50 of 10.66, 7.48, and 6.08 µg/mL, compared with ascorbic acid (IC 50 of 5.83 µg/mL). Molecular docking results showed that lupeol ( 2 ) exhibited strong binding energy of -7.7 and − 10 kcal/mol towards PDB ID: 4F86 and PDB ID: 3T07, respectively, compared to ciprofloxacin (-6.5 and − 7.2 kcal/mole). Towards PDB ID: 1DNU receptor, compounds 3 , 8 , and 9 showed minimum binding energy of -5.1, -4.8, and − 4.9 kcal/mol, respectively, compared to ascorbic acid (-5.7 kcal/mol). The Swiss ADME prediction results indicated that compounds 2 , 3 , 8 , and 9 obeyed the Lipinksi rule of five and Veber rule with 0 violations. The in vitro antibacterial and antioxidant results supported by in silico analysis indicated that compounds 2 , 3 , 8 , and 9 can potentially be lead candidates for the treatment of pathogenic and free radical-induced disorders.</abstract><cop>Singapore</cop><pub>Springer Nature Singapore</pub><doi>10.1186/s13765-024-00930-6</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2468-0842
ispartof Applied Biological Chemistry, 2024, 67(0), , pp.1-16
issn 2468-0842
2468-0834
2468-0842
language eng
recordid cdi_nrf_kci_oai_kci_go_kr_ARTI_10621075
source Springer Nature - SpringerLink Journals - Fully Open Access; Publicly Available Content (ProQuest); Coronavirus Research Database
subjects Acids
Acokanthera schimperi
Antibacterial
Antibacterial activity
Antiinfectives and antibacterials
Antioxidant
Antioxidants
Applied Microbiology
Ascorbic acid
Binding energy
Biological Techniques
Bioorganic Chemistry
Chemistry
Chemistry and Materials Science
Ciprofloxacin
Column chromatography
Dichloromethane
E coli
Ectoparasites
Free radicals
Gallic acid
Hemorrhoids
Herbal medicine
L-Rhamnopyranoside
Malaria
Medicinal plants
Molecular docking
NMR
Nuclear magnetic resonance
Oleic acid
Rhus glutinosa
Roots
Scabies
Scavenging
Silica
Silica gel
Sucrose
Thermodynamics
Vector-borne diseases
농학
title In vitro antibacterial, antioxidant, in silico molecular docking and ADEMT analysis of chemical constituents from the roots of Acokanthera schimperi and Rhus glutinosa
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T15%3A31%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_nrf_k&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20vitro%20antibacterial,%20antioxidant,%20in%20silico%20molecular%20docking%20and%20ADEMT%20analysis%20of%20chemical%20constituents%20from%20the%20roots%20of%20Acokanthera%20schimperi%20and%20Rhus%20glutinosa&rft.jtitle=Applied%20biological%20chemistry&rft.au=Abera,%20Bihon&rft.date=2024-09-02&rft.volume=67&rft.issue=1&rft.spage=77&rft.epage=16&rft.pages=77-16&rft.artnum=77&rft.issn=2468-0842&rft.eissn=2468-0842&rft_id=info:doi/10.1186/s13765-024-00930-6&rft_dat=%3Cproquest_nrf_k%3E3099954679%3C/proquest_nrf_k%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c345t-20b232ac9ff24edacde12e9beae33fbd5b8d50a001194d5fbf62b0d2c8ce0b243%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3099954679&rft_id=info:pmid/&rfr_iscdi=true