Loading…
In vitro antibacterial, antioxidant, in silico molecular docking and ADEMT analysis of chemical constituents from the roots of Acokanthera schimperi and Rhus glutinosa
Acokanthera schimperi is a medicinal plant traditionally used for the treatment of wounds, scabies, and malaria. Rhus glutinosa has been also utilized for the management of ectoparasites and hemorrhoids. Silica gel column chromatography separation of CH 2 Cl 2 /MeOH (1:1) extract root of A. schimper...
Saved in:
Published in: | Applied biological chemistry 2024, 67(0), , pp.1-16 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c345t-20b232ac9ff24edacde12e9beae33fbd5b8d50a001194d5fbf62b0d2c8ce0b243 |
container_end_page | 16 |
container_issue | 1 |
container_start_page | 77 |
container_title | Applied biological chemistry |
container_volume | 67 |
creator | Abera, Bihon Melaku, Yadessa Shenkute, Kebede Dekebo, Aman Abdissa, Negera Endale, Milkyas Negassa, Temesgen Woldemariam, Messay Hunsen, Mo |
description | Acokanthera schimperi
is a medicinal plant traditionally used for the treatment of wounds, scabies, and malaria.
Rhus glutinosa
has been also utilized for the management of ectoparasites and hemorrhoids. Silica gel column chromatography separation of CH
2
Cl
2
/MeOH (1:1) extract root of
A. schimperi
afforded oleic acid (
1
), lupeol (
2
), dihydroferulic acid (
3
), acovenosigenin A- 3-O-α-L-rhamnopyranoside (
4
) and sucrose (
5
) whereas CH
2
Cl
2
/ MeOH (1:1) and MeOH roots extracts of
R. glutinosa
afforded β-sitosterol (
6
), (E)-5-(heptadec-14-en-1-yl)-4,5-dihydroxycyclohex-2-enone (
7
), methyl gallate (
8
), and gallic acid (
9
). The structures of the compounds were established using spectroscopic (1D and 2D NMR) and FT-IR techniques. Disc diffusin and DPPH assay were used, respectively, to evaluate the antibacterial and antioxidant potential of the extracts and isolated compounds. MeOH extract root of
A. schimperi
showed a modest antibacterial effect against
E.coli
with an inhibition zone (ZI) of 16 ± 0.0 mm compared to ciprofloxacin (ZI of 27.0 ± 0.0 mm). CH
2
Cl
2
/MeOH (1:1) and MeOH root extracts of
R. glutinosa
showed maximum activity against
S. aureus
with ZI of 17.3 ± 0.04 and 18.0 ± 0.0 mm, respectively. At 5 mg/mL, the highest activity was noted against
S. aureus
by
8
with ZI of 18.6 ± 0.08 mm. Dihydroferulic acid (
3
), methyl gallate (
8
), and gallic acid (
9
) displayed potent scavenging of DPPH radical with respective IC
50
of 10.66, 7.48, and 6.08 µg/mL, compared with ascorbic acid (IC
50
of 5.83 µg/mL). Molecular docking results showed that lupeol (
2
) exhibited strong binding energy of -7.7 and − 10 kcal/mol towards PDB ID: 4F86 and PDB ID: 3T07, respectively, compared to ciprofloxacin (-6.5 and − 7.2 kcal/mole). Towards PDB ID: 1DNU receptor, compounds
3
,
8
, and
9
showed minimum binding energy of -5.1, -4.8, and − 4.9 kcal/mol, respectively, compared to ascorbic acid (-5.7 kcal/mol). The Swiss ADME prediction results indicated that compounds
2
,
3
,
8
, and
9
obeyed the Lipinksi rule of five and Veber rule with 0 violations. The in vitro antibacterial and antioxidant results supported by
in silico
analysis indicated that compounds
2
,
3
,
8
, and
9
can potentially be lead candidates for the treatment of pathogenic and free radical-induced disorders. |
doi_str_mv | 10.1186/s13765-024-00930-6 |
format | article |
fullrecord | <record><control><sourceid>proquest_nrf_k</sourceid><recordid>TN_cdi_nrf_kci_oai_kci_go_kr_ARTI_10621075</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_c995bf5093534ea687b8ad1c02549779</doaj_id><sourcerecordid>3099954679</sourcerecordid><originalsourceid>FETCH-LOGICAL-c345t-20b232ac9ff24edacde12e9beae33fbd5b8d50a001194d5fbf62b0d2c8ce0b243</originalsourceid><addsrcrecordid>eNp9ks1u1DAUhSMEElXpC7CyxA411P9JlqNSYKQipGpYW45_Es848WA7iD4Rr4mbIGDF6l5ffedc6fpU1WsE3yHU8puESMNZDTGtIewIrPmz6gJT3tawpfj5P_3L6iqlI4QQ8ZZjRi6qn_sZfHc5BiDn7HqpsolO-uv1GX44Xeo1cDNIzjsVwBS8UYuXEeigTm4eCqjB7v3d50PppH9MLoFggRrN5JT0QIU5ZZcXM-cEbAwTyKMBMYS8cjsVTmXFaKIESY1uOpf9q-fDuCQw-CW7OST5qnphpU_m6ne9rL5-uDvcfqrvv3zc3-7ua0UoyzWGPSZYqs5aTI2WShuETdcbaQixvWZ9qxmU5QCoo5rZ3nLcQ41Vq0yRUnJZvd1852jFSTkRpFvrEMQpit3DYS8Q5BjBhhV4v8E6yKM4RzfJ-Lgq1kGIg5AxO-WNUF3HesvK9zBCjeRt07dSIwUxo13TdMXrzeZ1juHbYlIWx7DEctEkCOyKmvKVwhulYkgpGvtnK4LiKQxiC4MoYRBrGAQvIrKJUoHnwcS_1v9R_QL1LLm2</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3099954679</pqid></control><display><type>article</type><title>In vitro antibacterial, antioxidant, in silico molecular docking and ADEMT analysis of chemical constituents from the roots of Acokanthera schimperi and Rhus glutinosa</title><source>Springer Nature - SpringerLink Journals - Fully Open Access</source><source>Publicly Available Content (ProQuest)</source><source>Coronavirus Research Database</source><creator>Abera, Bihon ; Melaku, Yadessa ; Shenkute, Kebede ; Dekebo, Aman ; Abdissa, Negera ; Endale, Milkyas ; Negassa, Temesgen ; Woldemariam, Messay ; Hunsen, Mo</creator><creatorcontrib>Abera, Bihon ; Melaku, Yadessa ; Shenkute, Kebede ; Dekebo, Aman ; Abdissa, Negera ; Endale, Milkyas ; Negassa, Temesgen ; Woldemariam, Messay ; Hunsen, Mo</creatorcontrib><description>Acokanthera schimperi
is a medicinal plant traditionally used for the treatment of wounds, scabies, and malaria.
Rhus glutinosa
has been also utilized for the management of ectoparasites and hemorrhoids. Silica gel column chromatography separation of CH
2
Cl
2
/MeOH (1:1) extract root of
A. schimperi
afforded oleic acid (
1
), lupeol (
2
), dihydroferulic acid (
3
), acovenosigenin A- 3-O-α-L-rhamnopyranoside (
4
) and sucrose (
5
) whereas CH
2
Cl
2
/ MeOH (1:1) and MeOH roots extracts of
R. glutinosa
afforded β-sitosterol (
6
), (E)-5-(heptadec-14-en-1-yl)-4,5-dihydroxycyclohex-2-enone (
7
), methyl gallate (
8
), and gallic acid (
9
). The structures of the compounds were established using spectroscopic (1D and 2D NMR) and FT-IR techniques. Disc diffusin and DPPH assay were used, respectively, to evaluate the antibacterial and antioxidant potential of the extracts and isolated compounds. MeOH extract root of
A. schimperi
showed a modest antibacterial effect against
E.coli
with an inhibition zone (ZI) of 16 ± 0.0 mm compared to ciprofloxacin (ZI of 27.0 ± 0.0 mm). CH
2
Cl
2
/MeOH (1:1) and MeOH root extracts of
R. glutinosa
showed maximum activity against
S. aureus
with ZI of 17.3 ± 0.04 and 18.0 ± 0.0 mm, respectively. At 5 mg/mL, the highest activity was noted against
S. aureus
by
8
with ZI of 18.6 ± 0.08 mm. Dihydroferulic acid (
3
), methyl gallate (
8
), and gallic acid (
9
) displayed potent scavenging of DPPH radical with respective IC
50
of 10.66, 7.48, and 6.08 µg/mL, compared with ascorbic acid (IC
50
of 5.83 µg/mL). Molecular docking results showed that lupeol (
2
) exhibited strong binding energy of -7.7 and − 10 kcal/mol towards PDB ID: 4F86 and PDB ID: 3T07, respectively, compared to ciprofloxacin (-6.5 and − 7.2 kcal/mole). Towards PDB ID: 1DNU receptor, compounds
3
,
8
, and
9
showed minimum binding energy of -5.1, -4.8, and − 4.9 kcal/mol, respectively, compared to ascorbic acid (-5.7 kcal/mol). The Swiss ADME prediction results indicated that compounds
2
,
3
,
8
, and
9
obeyed the Lipinksi rule of five and Veber rule with 0 violations. The in vitro antibacterial and antioxidant results supported by
in silico
analysis indicated that compounds
2
,
3
,
8
, and
9
can potentially be lead candidates for the treatment of pathogenic and free radical-induced disorders.</description><identifier>ISSN: 2468-0842</identifier><identifier>ISSN: 2468-0834</identifier><identifier>EISSN: 2468-0842</identifier><identifier>DOI: 10.1186/s13765-024-00930-6</identifier><language>eng</language><publisher>Singapore: Springer Nature Singapore</publisher><subject>Acids ; Acokanthera schimperi ; Antibacterial ; Antibacterial activity ; Antiinfectives and antibacterials ; Antioxidant ; Antioxidants ; Applied Microbiology ; Ascorbic acid ; Binding energy ; Biological Techniques ; Bioorganic Chemistry ; Chemistry ; Chemistry and Materials Science ; Ciprofloxacin ; Column chromatography ; Dichloromethane ; E coli ; Ectoparasites ; Free radicals ; Gallic acid ; Hemorrhoids ; Herbal medicine ; L-Rhamnopyranoside ; Malaria ; Medicinal plants ; Molecular docking ; NMR ; Nuclear magnetic resonance ; Oleic acid ; Rhus glutinosa ; Roots ; Scabies ; Scavenging ; Silica ; Silica gel ; Sucrose ; Thermodynamics ; Vector-borne diseases ; 농학</subject><ispartof>Applied Biological Chemistry, 2024, 67(0), , pp.1-16</ispartof><rights>The Author(s) 2024</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c345t-20b232ac9ff24edacde12e9beae33fbd5b8d50a001194d5fbf62b0d2c8ce0b243</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/3099954679?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,38516,43895,44590</link.rule.ids><backlink>$$Uhttps://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003114210$$DAccess content in National Research Foundation of Korea (NRF)$$Hfree_for_read</backlink></links><search><creatorcontrib>Abera, Bihon</creatorcontrib><creatorcontrib>Melaku, Yadessa</creatorcontrib><creatorcontrib>Shenkute, Kebede</creatorcontrib><creatorcontrib>Dekebo, Aman</creatorcontrib><creatorcontrib>Abdissa, Negera</creatorcontrib><creatorcontrib>Endale, Milkyas</creatorcontrib><creatorcontrib>Negassa, Temesgen</creatorcontrib><creatorcontrib>Woldemariam, Messay</creatorcontrib><creatorcontrib>Hunsen, Mo</creatorcontrib><title>In vitro antibacterial, antioxidant, in silico molecular docking and ADEMT analysis of chemical constituents from the roots of Acokanthera schimperi and Rhus glutinosa</title><title>Applied biological chemistry</title><addtitle>Appl Biol Chem</addtitle><description>Acokanthera schimperi
is a medicinal plant traditionally used for the treatment of wounds, scabies, and malaria.
Rhus glutinosa
has been also utilized for the management of ectoparasites and hemorrhoids. Silica gel column chromatography separation of CH
2
Cl
2
/MeOH (1:1) extract root of
A. schimperi
afforded oleic acid (
1
), lupeol (
2
), dihydroferulic acid (
3
), acovenosigenin A- 3-O-α-L-rhamnopyranoside (
4
) and sucrose (
5
) whereas CH
2
Cl
2
/ MeOH (1:1) and MeOH roots extracts of
R. glutinosa
afforded β-sitosterol (
6
), (E)-5-(heptadec-14-en-1-yl)-4,5-dihydroxycyclohex-2-enone (
7
), methyl gallate (
8
), and gallic acid (
9
). The structures of the compounds were established using spectroscopic (1D and 2D NMR) and FT-IR techniques. Disc diffusin and DPPH assay were used, respectively, to evaluate the antibacterial and antioxidant potential of the extracts and isolated compounds. MeOH extract root of
A. schimperi
showed a modest antibacterial effect against
E.coli
with an inhibition zone (ZI) of 16 ± 0.0 mm compared to ciprofloxacin (ZI of 27.0 ± 0.0 mm). CH
2
Cl
2
/MeOH (1:1) and MeOH root extracts of
R. glutinosa
showed maximum activity against
S. aureus
with ZI of 17.3 ± 0.04 and 18.0 ± 0.0 mm, respectively. At 5 mg/mL, the highest activity was noted against
S. aureus
by
8
with ZI of 18.6 ± 0.08 mm. Dihydroferulic acid (
3
), methyl gallate (
8
), and gallic acid (
9
) displayed potent scavenging of DPPH radical with respective IC
50
of 10.66, 7.48, and 6.08 µg/mL, compared with ascorbic acid (IC
50
of 5.83 µg/mL). Molecular docking results showed that lupeol (
2
) exhibited strong binding energy of -7.7 and − 10 kcal/mol towards PDB ID: 4F86 and PDB ID: 3T07, respectively, compared to ciprofloxacin (-6.5 and − 7.2 kcal/mole). Towards PDB ID: 1DNU receptor, compounds
3
,
8
, and
9
showed minimum binding energy of -5.1, -4.8, and − 4.9 kcal/mol, respectively, compared to ascorbic acid (-5.7 kcal/mol). The Swiss ADME prediction results indicated that compounds
2
,
3
,
8
, and
9
obeyed the Lipinksi rule of five and Veber rule with 0 violations. The in vitro antibacterial and antioxidant results supported by
in silico
analysis indicated that compounds
2
,
3
,
8
, and
9
can potentially be lead candidates for the treatment of pathogenic and free radical-induced disorders.</description><subject>Acids</subject><subject>Acokanthera schimperi</subject><subject>Antibacterial</subject><subject>Antibacterial activity</subject><subject>Antiinfectives and antibacterials</subject><subject>Antioxidant</subject><subject>Antioxidants</subject><subject>Applied Microbiology</subject><subject>Ascorbic acid</subject><subject>Binding energy</subject><subject>Biological Techniques</subject><subject>Bioorganic Chemistry</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Ciprofloxacin</subject><subject>Column chromatography</subject><subject>Dichloromethane</subject><subject>E coli</subject><subject>Ectoparasites</subject><subject>Free radicals</subject><subject>Gallic acid</subject><subject>Hemorrhoids</subject><subject>Herbal medicine</subject><subject>L-Rhamnopyranoside</subject><subject>Malaria</subject><subject>Medicinal plants</subject><subject>Molecular docking</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Oleic acid</subject><subject>Rhus glutinosa</subject><subject>Roots</subject><subject>Scabies</subject><subject>Scavenging</subject><subject>Silica</subject><subject>Silica gel</subject><subject>Sucrose</subject><subject>Thermodynamics</subject><subject>Vector-borne diseases</subject><subject>농학</subject><issn>2468-0842</issn><issn>2468-0834</issn><issn>2468-0842</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>COVID</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9ks1u1DAUhSMEElXpC7CyxA411P9JlqNSYKQipGpYW45_Es848WA7iD4Rr4mbIGDF6l5ffedc6fpU1WsE3yHU8puESMNZDTGtIewIrPmz6gJT3tawpfj5P_3L6iqlI4QQ8ZZjRi6qn_sZfHc5BiDn7HqpsolO-uv1GX44Xeo1cDNIzjsVwBS8UYuXEeigTm4eCqjB7v3d50PppH9MLoFggRrN5JT0QIU5ZZcXM-cEbAwTyKMBMYS8cjsVTmXFaKIESY1uOpf9q-fDuCQw-CW7OST5qnphpU_m6ne9rL5-uDvcfqrvv3zc3-7ua0UoyzWGPSZYqs5aTI2WShuETdcbaQixvWZ9qxmU5QCoo5rZ3nLcQ41Vq0yRUnJZvd1852jFSTkRpFvrEMQpit3DYS8Q5BjBhhV4v8E6yKM4RzfJ-Lgq1kGIg5AxO-WNUF3HesvK9zBCjeRt07dSIwUxo13TdMXrzeZ1juHbYlIWx7DEctEkCOyKmvKVwhulYkgpGvtnK4LiKQxiC4MoYRBrGAQvIrKJUoHnwcS_1v9R_QL1LLm2</recordid><startdate>20240902</startdate><enddate>20240902</enddate><creator>Abera, Bihon</creator><creator>Melaku, Yadessa</creator><creator>Shenkute, Kebede</creator><creator>Dekebo, Aman</creator><creator>Abdissa, Negera</creator><creator>Endale, Milkyas</creator><creator>Negassa, Temesgen</creator><creator>Woldemariam, Messay</creator><creator>Hunsen, Mo</creator><general>Springer Nature Singapore</general><general>Springer Nature B.V</general><general>SpringerOpen</general><general>한국응용생명화학회</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X2</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>COVID</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M0K</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><scope>ACYCR</scope></search><sort><creationdate>20240902</creationdate><title>In vitro antibacterial, antioxidant, in silico molecular docking and ADEMT analysis of chemical constituents from the roots of Acokanthera schimperi and Rhus glutinosa</title><author>Abera, Bihon ; Melaku, Yadessa ; Shenkute, Kebede ; Dekebo, Aman ; Abdissa, Negera ; Endale, Milkyas ; Negassa, Temesgen ; Woldemariam, Messay ; Hunsen, Mo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c345t-20b232ac9ff24edacde12e9beae33fbd5b8d50a001194d5fbf62b0d2c8ce0b243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Acids</topic><topic>Acokanthera schimperi</topic><topic>Antibacterial</topic><topic>Antibacterial activity</topic><topic>Antiinfectives and antibacterials</topic><topic>Antioxidant</topic><topic>Antioxidants</topic><topic>Applied Microbiology</topic><topic>Ascorbic acid</topic><topic>Binding energy</topic><topic>Biological Techniques</topic><topic>Bioorganic Chemistry</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Ciprofloxacin</topic><topic>Column chromatography</topic><topic>Dichloromethane</topic><topic>E coli</topic><topic>Ectoparasites</topic><topic>Free radicals</topic><topic>Gallic acid</topic><topic>Hemorrhoids</topic><topic>Herbal medicine</topic><topic>L-Rhamnopyranoside</topic><topic>Malaria</topic><topic>Medicinal plants</topic><topic>Molecular docking</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Oleic acid</topic><topic>Rhus glutinosa</topic><topic>Roots</topic><topic>Scabies</topic><topic>Scavenging</topic><topic>Silica</topic><topic>Silica gel</topic><topic>Sucrose</topic><topic>Thermodynamics</topic><topic>Vector-borne diseases</topic><topic>농학</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abera, Bihon</creatorcontrib><creatorcontrib>Melaku, Yadessa</creatorcontrib><creatorcontrib>Shenkute, Kebede</creatorcontrib><creatorcontrib>Dekebo, Aman</creatorcontrib><creatorcontrib>Abdissa, Negera</creatorcontrib><creatorcontrib>Endale, Milkyas</creatorcontrib><creatorcontrib>Negassa, Temesgen</creatorcontrib><creatorcontrib>Woldemariam, Messay</creatorcontrib><creatorcontrib>Hunsen, Mo</creatorcontrib><collection>Springer Open Access</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Biological Sciences</collection><collection>Agriculture Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><collection>Korean Citation Index</collection><jtitle>Applied biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abera, Bihon</au><au>Melaku, Yadessa</au><au>Shenkute, Kebede</au><au>Dekebo, Aman</au><au>Abdissa, Negera</au><au>Endale, Milkyas</au><au>Negassa, Temesgen</au><au>Woldemariam, Messay</au><au>Hunsen, Mo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In vitro antibacterial, antioxidant, in silico molecular docking and ADEMT analysis of chemical constituents from the roots of Acokanthera schimperi and Rhus glutinosa</atitle><jtitle>Applied biological chemistry</jtitle><stitle>Appl Biol Chem</stitle><date>2024-09-02</date><risdate>2024</risdate><volume>67</volume><issue>1</issue><spage>77</spage><epage>16</epage><pages>77-16</pages><artnum>77</artnum><issn>2468-0842</issn><issn>2468-0834</issn><eissn>2468-0842</eissn><abstract>Acokanthera schimperi
is a medicinal plant traditionally used for the treatment of wounds, scabies, and malaria.
Rhus glutinosa
has been also utilized for the management of ectoparasites and hemorrhoids. Silica gel column chromatography separation of CH
2
Cl
2
/MeOH (1:1) extract root of
A. schimperi
afforded oleic acid (
1
), lupeol (
2
), dihydroferulic acid (
3
), acovenosigenin A- 3-O-α-L-rhamnopyranoside (
4
) and sucrose (
5
) whereas CH
2
Cl
2
/ MeOH (1:1) and MeOH roots extracts of
R. glutinosa
afforded β-sitosterol (
6
), (E)-5-(heptadec-14-en-1-yl)-4,5-dihydroxycyclohex-2-enone (
7
), methyl gallate (
8
), and gallic acid (
9
). The structures of the compounds were established using spectroscopic (1D and 2D NMR) and FT-IR techniques. Disc diffusin and DPPH assay were used, respectively, to evaluate the antibacterial and antioxidant potential of the extracts and isolated compounds. MeOH extract root of
A. schimperi
showed a modest antibacterial effect against
E.coli
with an inhibition zone (ZI) of 16 ± 0.0 mm compared to ciprofloxacin (ZI of 27.0 ± 0.0 mm). CH
2
Cl
2
/MeOH (1:1) and MeOH root extracts of
R. glutinosa
showed maximum activity against
S. aureus
with ZI of 17.3 ± 0.04 and 18.0 ± 0.0 mm, respectively. At 5 mg/mL, the highest activity was noted against
S. aureus
by
8
with ZI of 18.6 ± 0.08 mm. Dihydroferulic acid (
3
), methyl gallate (
8
), and gallic acid (
9
) displayed potent scavenging of DPPH radical with respective IC
50
of 10.66, 7.48, and 6.08 µg/mL, compared with ascorbic acid (IC
50
of 5.83 µg/mL). Molecular docking results showed that lupeol (
2
) exhibited strong binding energy of -7.7 and − 10 kcal/mol towards PDB ID: 4F86 and PDB ID: 3T07, respectively, compared to ciprofloxacin (-6.5 and − 7.2 kcal/mole). Towards PDB ID: 1DNU receptor, compounds
3
,
8
, and
9
showed minimum binding energy of -5.1, -4.8, and − 4.9 kcal/mol, respectively, compared to ascorbic acid (-5.7 kcal/mol). The Swiss ADME prediction results indicated that compounds
2
,
3
,
8
, and
9
obeyed the Lipinksi rule of five and Veber rule with 0 violations. The in vitro antibacterial and antioxidant results supported by
in silico
analysis indicated that compounds
2
,
3
,
8
, and
9
can potentially be lead candidates for the treatment of pathogenic and free radical-induced disorders.</abstract><cop>Singapore</cop><pub>Springer Nature Singapore</pub><doi>10.1186/s13765-024-00930-6</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2468-0842 |
ispartof | Applied Biological Chemistry, 2024, 67(0), , pp.1-16 |
issn | 2468-0842 2468-0834 2468-0842 |
language | eng |
recordid | cdi_nrf_kci_oai_kci_go_kr_ARTI_10621075 |
source | Springer Nature - SpringerLink Journals - Fully Open Access; Publicly Available Content (ProQuest); Coronavirus Research Database |
subjects | Acids Acokanthera schimperi Antibacterial Antibacterial activity Antiinfectives and antibacterials Antioxidant Antioxidants Applied Microbiology Ascorbic acid Binding energy Biological Techniques Bioorganic Chemistry Chemistry Chemistry and Materials Science Ciprofloxacin Column chromatography Dichloromethane E coli Ectoparasites Free radicals Gallic acid Hemorrhoids Herbal medicine L-Rhamnopyranoside Malaria Medicinal plants Molecular docking NMR Nuclear magnetic resonance Oleic acid Rhus glutinosa Roots Scabies Scavenging Silica Silica gel Sucrose Thermodynamics Vector-borne diseases 농학 |
title | In vitro antibacterial, antioxidant, in silico molecular docking and ADEMT analysis of chemical constituents from the roots of Acokanthera schimperi and Rhus glutinosa |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T15%3A31%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_nrf_k&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20vitro%20antibacterial,%20antioxidant,%20in%20silico%20molecular%20docking%20and%20ADEMT%20analysis%20of%20chemical%20constituents%20from%20the%20roots%20of%20Acokanthera%20schimperi%20and%20Rhus%20glutinosa&rft.jtitle=Applied%20biological%20chemistry&rft.au=Abera,%20Bihon&rft.date=2024-09-02&rft.volume=67&rft.issue=1&rft.spage=77&rft.epage=16&rft.pages=77-16&rft.artnum=77&rft.issn=2468-0842&rft.eissn=2468-0842&rft_id=info:doi/10.1186/s13765-024-00930-6&rft_dat=%3Cproquest_nrf_k%3E3099954679%3C/proquest_nrf_k%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c345t-20b232ac9ff24edacde12e9beae33fbd5b8d50a001194d5fbf62b0d2c8ce0b243%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3099954679&rft_id=info:pmid/&rfr_iscdi=true |