Loading…

The green approach of chitosan/Fe2O3/ZnO-nanocomposite synthesis with an evaluation of its biological activities

Biopolymers embedded with nanoparticles of metal oxides (MOs) demonstrate a wide range of bio-functions. Chitosan-incorporated MOs are an interesting class of support matrices for enhancing the biological function, compared to other support matrices. Therefore, the importance of this study lies in e...

Full description

Saved in:
Bibliographic Details
Published in:Applied biological chemistry 2024, 67(0), , pp.1-13
Main Authors: Al-Rajhi, Aisha M. H., Abdelghany, Tarek M., Almuhayawi, Mohammed S., Alruhaili, Mohammed H., Al Jaouni, Soad K., Selim, Samy
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c448t-31472fbf768dd56ddec09737379a2fa8672aad3a5e12e3c0c8d82f0debea9d163
container_end_page 75
container_issue 1
container_start_page 75
container_title Applied biological chemistry
container_volume 67
creator Al-Rajhi, Aisha M. H.
Abdelghany, Tarek M.
Almuhayawi, Mohammed S.
Alruhaili, Mohammed H.
Al Jaouni, Soad K.
Selim, Samy
description Biopolymers embedded with nanoparticles of metal oxides (MOs) demonstrate a wide range of bio-functions. Chitosan-incorporated MOs are an interesting class of support matrices for enhancing the biological function, compared to other support matrices. Therefore, the importance of this study lies in exploiting chitosan as a carrier not of one metal as in previous studies, but of two metals in the form of a nanocomposite to carry out several biological functions. The coprecipitation approach was employed to synthesize chitosan/Fe 2 O 3 /ZnO-nanocomposite in the present research. The characterization of chitosan/Fe 2 O 3 /ZnO-nanocomposite was performed to find out the morphology and dispersion properties of chitosan/Fe 2 O 3 /ZnO-nanocomposite. The X-ray diffraction (XRD) investigation revealed that these were crystalline. Fourier transforms infrared (FTIR) spectrum bands were viewed at 400/cm and 900/cm, due to the stretching vibration of Fe and Zn oxygen bond. TEM showed that chitosan/Fe 2 O 3 /ZnO-nanocomposite was of 20–95 nm in size. chitosan/Fe 2 O 3 /ZnO-nanocomposite exhibited inhibitory potential against Staphylococcus aureus , Bacillus subtilis, Escherichia coli , and Candida albicans with inhibition zones of 25 ± 0.1, 28 ± 0.2, 27 ± 0.1, and 27 ± 0.2 mm, respectively while didn’t inhibited Aspergillus niger . MIC value of nanocomposite was 15.62 ± 0.33 µg/mL for C. albicans, B. subtilis and E. coli , while it was 62.50 ± 0.66 µg/mL for Pseudomonas aeruginosa . Ranged values of nanocomposite MBC (15.62 ± 0.33 to 125 ± 1 µg/mL) were attributed to all tested bacteria. Different concentrations of chitosan/Fe 2 O 3 /ZnO-nanocomposite MBC (25, 50, and 75%) reflected anti-biofilm activity against E. coli (85.0, 93.2, and 96.0%), B. subtilis (84.88, 92.21, and 96.99%), S. aureus 81.64, 90.52, and 94.64%) and P. aurogenosa (90.11, 94.43, and 98.24%), respectively. The differences in the levels of antimicrobial activities may depend on the type of examined microbes. Antioxidant activity of chitosan/Fe 2 O 3 /ZnO-nanocomposite was recorded with excellent IC 50 values of 16.06 and 32.6 µg/mL using DPPH and ABTS scavenging, respectively. Wound heal by chitosan/Fe 2 O 3 /ZnO-nanocomposite was achieved with 100% compared to the untreated cells (76.75% of wound closer). The cytotoxicity outcomes showed that the IC 50 of the chitosan/Fe 2 O 3 /ZnO-nanocomposite was 564.32 ± 1.46 µg/mL normal WI-38 cells. Based on the achieved findings, the chitosan/Fe 2 O 3 /ZnO-na
doi_str_mv 10.1186/s13765-024-00926-2
format article
fullrecord <record><control><sourceid>proquest_nrf_k</sourceid><recordid>TN_cdi_nrf_kci_oai_kci_go_kr_ARTI_10621078</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_24948e9dbfc64700b719e0dd2fba7bb9</doaj_id><sourcerecordid>3153761218</sourcerecordid><originalsourceid>FETCH-LOGICAL-c448t-31472fbf768dd56ddec09737379a2fa8672aad3a5e12e3c0c8d82f0debea9d163</originalsourceid><addsrcrecordid>eNp9kk9r3DAQxU1poSHJF-jJ0EspuKs_tiwfQ2jahcBC2V56EWNpbGvjlbaSNiHfvtp1aEsPRYcR4veehplXFO8o-USpFKtIeSuairC6IqRjomKvigtWC1kRWbPXf93fFtcx7gghVEjBGn5RHLYTlmNAdCUcDsGDnko_lHqyyUdwqztkG7764TaVA-e13x98tAnL-OzShNHG8smmqQRX4iPMR0jWu5OBTbHsrZ_9aDXMJehkH22yGK-KNwPMEa9f6mXx_e7z9vZrdb_5sr69ua90XctUcVq3bOiHVkhjGmEMatK1PJ8O2ABStAzAcGiQMuSaaGkkG4jBHqEzVPDL4uPi68KgHrRVHuy5jl49BHXzbbtWlAhGSSszvF5g42GnDsHuITyfFecHH0YFIVk9o2J1V0vsTD9oUbeE9C3tkBiTm4W277vs9WHxytP8ecSY1N5GjfMMDv0xKk6bvC7K6Onb9_-gO38MLo9FcdJJ0uT1tpliC6WDjzHg8LtBStQpAGoJgMoBUOcAKJZFfBHFDLsRwx_r_6h-AZeHs0E</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3098051187</pqid></control><display><type>article</type><title>The green approach of chitosan/Fe2O3/ZnO-nanocomposite synthesis with an evaluation of its biological activities</title><source>Springer Nature Link Journals Open Access</source><source>ProQuest Publicly Available Content Database</source><creator>Al-Rajhi, Aisha M. H. ; Abdelghany, Tarek M. ; Almuhayawi, Mohammed S. ; Alruhaili, Mohammed H. ; Al Jaouni, Soad K. ; Selim, Samy</creator><creatorcontrib>Al-Rajhi, Aisha M. H. ; Abdelghany, Tarek M. ; Almuhayawi, Mohammed S. ; Alruhaili, Mohammed H. ; Al Jaouni, Soad K. ; Selim, Samy</creatorcontrib><description>Biopolymers embedded with nanoparticles of metal oxides (MOs) demonstrate a wide range of bio-functions. Chitosan-incorporated MOs are an interesting class of support matrices for enhancing the biological function, compared to other support matrices. Therefore, the importance of this study lies in exploiting chitosan as a carrier not of one metal as in previous studies, but of two metals in the form of a nanocomposite to carry out several biological functions. The coprecipitation approach was employed to synthesize chitosan/Fe 2 O 3 /ZnO-nanocomposite in the present research. The characterization of chitosan/Fe 2 O 3 /ZnO-nanocomposite was performed to find out the morphology and dispersion properties of chitosan/Fe 2 O 3 /ZnO-nanocomposite. The X-ray diffraction (XRD) investigation revealed that these were crystalline. Fourier transforms infrared (FTIR) spectrum bands were viewed at 400/cm and 900/cm, due to the stretching vibration of Fe and Zn oxygen bond. TEM showed that chitosan/Fe 2 O 3 /ZnO-nanocomposite was of 20–95 nm in size. chitosan/Fe 2 O 3 /ZnO-nanocomposite exhibited inhibitory potential against Staphylococcus aureus , Bacillus subtilis, Escherichia coli , and Candida albicans with inhibition zones of 25 ± 0.1, 28 ± 0.2, 27 ± 0.1, and 27 ± 0.2 mm, respectively while didn’t inhibited Aspergillus niger . MIC value of nanocomposite was 15.62 ± 0.33 µg/mL for C. albicans, B. subtilis and E. coli , while it was 62.50 ± 0.66 µg/mL for Pseudomonas aeruginosa . Ranged values of nanocomposite MBC (15.62 ± 0.33 to 125 ± 1 µg/mL) were attributed to all tested bacteria. Different concentrations of chitosan/Fe 2 O 3 /ZnO-nanocomposite MBC (25, 50, and 75%) reflected anti-biofilm activity against E. coli (85.0, 93.2, and 96.0%), B. subtilis (84.88, 92.21, and 96.99%), S. aureus 81.64, 90.52, and 94.64%) and P. aurogenosa (90.11, 94.43, and 98.24%), respectively. The differences in the levels of antimicrobial activities may depend on the type of examined microbes. Antioxidant activity of chitosan/Fe 2 O 3 /ZnO-nanocomposite was recorded with excellent IC 50 values of 16.06 and 32.6 µg/mL using DPPH and ABTS scavenging, respectively. Wound heal by chitosan/Fe 2 O 3 /ZnO-nanocomposite was achieved with 100% compared to the untreated cells (76.75% of wound closer). The cytotoxicity outcomes showed that the IC 50 of the chitosan/Fe 2 O 3 /ZnO-nanocomposite was 564.32 ± 1.46 µg/mL normal WI-38 cells. Based on the achieved findings, the chitosan/Fe 2 O 3 /ZnO-nanocomposite is a very promising agent for perform pharmacological activities.</description><identifier>ISSN: 2468-0842</identifier><identifier>ISSN: 2468-0834</identifier><identifier>EISSN: 2468-0842</identifier><identifier>DOI: 10.1186/s13765-024-00926-2</identifier><language>eng</language><publisher>Singapore: Springer Nature Singapore</publisher><subject>Antimicrobial ; antimicrobial properties ; Antioxidant ; antioxidant activity ; Applied Microbiology ; Aspergillus niger ; Bacillus subtilis ; Bimetallic ; Biofilms ; Biological Techniques ; Bioorganic Chemistry ; Biopolymers ; Candida albicans ; Chemistry ; Chemistry and Materials Science ; Chitosan ; class ; Coprecipitation ; Cytotoxicity ; E coli ; Escherichia coli ; Ferric oxide ; Fourier transforms ; Infrared radiation ; Iron ; Metal oxides ; Metals ; Nanocomposite ; Nanocomposites ; Nanoparticles ; oxygen ; Pseudomonas aeruginosa ; Scavenging ; Staphylococcus aureus ; vibration ; Wounds ; X-ray diffraction ; Zinc oxide ; 농학</subject><ispartof>Applied Biological Chemistry, 2024, 67(0), , pp.1-13</ispartof><rights>The Author(s) 2024</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c448t-31472fbf768dd56ddec09737379a2fa8672aad3a5e12e3c0c8d82f0debea9d163</cites><orcidid>0000-0001-6418-5890</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/3098051187?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><backlink>$$Uhttps://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003110255$$DAccess content in National Research Foundation of Korea (NRF)$$Hfree_for_read</backlink></links><search><creatorcontrib>Al-Rajhi, Aisha M. H.</creatorcontrib><creatorcontrib>Abdelghany, Tarek M.</creatorcontrib><creatorcontrib>Almuhayawi, Mohammed S.</creatorcontrib><creatorcontrib>Alruhaili, Mohammed H.</creatorcontrib><creatorcontrib>Al Jaouni, Soad K.</creatorcontrib><creatorcontrib>Selim, Samy</creatorcontrib><title>The green approach of chitosan/Fe2O3/ZnO-nanocomposite synthesis with an evaluation of its biological activities</title><title>Applied biological chemistry</title><addtitle>Appl Biol Chem</addtitle><description>Biopolymers embedded with nanoparticles of metal oxides (MOs) demonstrate a wide range of bio-functions. Chitosan-incorporated MOs are an interesting class of support matrices for enhancing the biological function, compared to other support matrices. Therefore, the importance of this study lies in exploiting chitosan as a carrier not of one metal as in previous studies, but of two metals in the form of a nanocomposite to carry out several biological functions. The coprecipitation approach was employed to synthesize chitosan/Fe 2 O 3 /ZnO-nanocomposite in the present research. The characterization of chitosan/Fe 2 O 3 /ZnO-nanocomposite was performed to find out the morphology and dispersion properties of chitosan/Fe 2 O 3 /ZnO-nanocomposite. The X-ray diffraction (XRD) investigation revealed that these were crystalline. Fourier transforms infrared (FTIR) spectrum bands were viewed at 400/cm and 900/cm, due to the stretching vibration of Fe and Zn oxygen bond. TEM showed that chitosan/Fe 2 O 3 /ZnO-nanocomposite was of 20–95 nm in size. chitosan/Fe 2 O 3 /ZnO-nanocomposite exhibited inhibitory potential against Staphylococcus aureus , Bacillus subtilis, Escherichia coli , and Candida albicans with inhibition zones of 25 ± 0.1, 28 ± 0.2, 27 ± 0.1, and 27 ± 0.2 mm, respectively while didn’t inhibited Aspergillus niger . MIC value of nanocomposite was 15.62 ± 0.33 µg/mL for C. albicans, B. subtilis and E. coli , while it was 62.50 ± 0.66 µg/mL for Pseudomonas aeruginosa . Ranged values of nanocomposite MBC (15.62 ± 0.33 to 125 ± 1 µg/mL) were attributed to all tested bacteria. Different concentrations of chitosan/Fe 2 O 3 /ZnO-nanocomposite MBC (25, 50, and 75%) reflected anti-biofilm activity against E. coli (85.0, 93.2, and 96.0%), B. subtilis (84.88, 92.21, and 96.99%), S. aureus 81.64, 90.52, and 94.64%) and P. aurogenosa (90.11, 94.43, and 98.24%), respectively. The differences in the levels of antimicrobial activities may depend on the type of examined microbes. Antioxidant activity of chitosan/Fe 2 O 3 /ZnO-nanocomposite was recorded with excellent IC 50 values of 16.06 and 32.6 µg/mL using DPPH and ABTS scavenging, respectively. Wound heal by chitosan/Fe 2 O 3 /ZnO-nanocomposite was achieved with 100% compared to the untreated cells (76.75% of wound closer). The cytotoxicity outcomes showed that the IC 50 of the chitosan/Fe 2 O 3 /ZnO-nanocomposite was 564.32 ± 1.46 µg/mL normal WI-38 cells. Based on the achieved findings, the chitosan/Fe 2 O 3 /ZnO-nanocomposite is a very promising agent for perform pharmacological activities.</description><subject>Antimicrobial</subject><subject>antimicrobial properties</subject><subject>Antioxidant</subject><subject>antioxidant activity</subject><subject>Applied Microbiology</subject><subject>Aspergillus niger</subject><subject>Bacillus subtilis</subject><subject>Bimetallic</subject><subject>Biofilms</subject><subject>Biological Techniques</subject><subject>Bioorganic Chemistry</subject><subject>Biopolymers</subject><subject>Candida albicans</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Chitosan</subject><subject>class</subject><subject>Coprecipitation</subject><subject>Cytotoxicity</subject><subject>E coli</subject><subject>Escherichia coli</subject><subject>Ferric oxide</subject><subject>Fourier transforms</subject><subject>Infrared radiation</subject><subject>Iron</subject><subject>Metal oxides</subject><subject>Metals</subject><subject>Nanocomposite</subject><subject>Nanocomposites</subject><subject>Nanoparticles</subject><subject>oxygen</subject><subject>Pseudomonas aeruginosa</subject><subject>Scavenging</subject><subject>Staphylococcus aureus</subject><subject>vibration</subject><subject>Wounds</subject><subject>X-ray diffraction</subject><subject>Zinc oxide</subject><subject>농학</subject><issn>2468-0842</issn><issn>2468-0834</issn><issn>2468-0842</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kk9r3DAQxU1poSHJF-jJ0EspuKs_tiwfQ2jahcBC2V56EWNpbGvjlbaSNiHfvtp1aEsPRYcR4veehplXFO8o-USpFKtIeSuairC6IqRjomKvigtWC1kRWbPXf93fFtcx7gghVEjBGn5RHLYTlmNAdCUcDsGDnko_lHqyyUdwqztkG7764TaVA-e13x98tAnL-OzShNHG8smmqQRX4iPMR0jWu5OBTbHsrZ_9aDXMJehkH22yGK-KNwPMEa9f6mXx_e7z9vZrdb_5sr69ua90XctUcVq3bOiHVkhjGmEMatK1PJ8O2ABStAzAcGiQMuSaaGkkG4jBHqEzVPDL4uPi68KgHrRVHuy5jl49BHXzbbtWlAhGSSszvF5g42GnDsHuITyfFecHH0YFIVk9o2J1V0vsTD9oUbeE9C3tkBiTm4W277vs9WHxytP8ecSY1N5GjfMMDv0xKk6bvC7K6Onb9_-gO38MLo9FcdJJ0uT1tpliC6WDjzHg8LtBStQpAGoJgMoBUOcAKJZFfBHFDLsRwx_r_6h-AZeHs0E</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Al-Rajhi, Aisha M. H.</creator><creator>Abdelghany, Tarek M.</creator><creator>Almuhayawi, Mohammed S.</creator><creator>Alruhaili, Mohammed H.</creator><creator>Al Jaouni, Soad K.</creator><creator>Selim, Samy</creator><general>Springer Nature Singapore</general><general>Springer Nature B.V</general><general>SpringerOpen</general><general>한국응용생명화학회</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X2</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M0K</scope><scope>M7P</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7S9</scope><scope>L.6</scope><scope>DOA</scope><scope>ACYCR</scope><orcidid>https://orcid.org/0000-0001-6418-5890</orcidid></search><sort><creationdate>20241201</creationdate><title>The green approach of chitosan/Fe2O3/ZnO-nanocomposite synthesis with an evaluation of its biological activities</title><author>Al-Rajhi, Aisha M. H. ; Abdelghany, Tarek M. ; Almuhayawi, Mohammed S. ; Alruhaili, Mohammed H. ; Al Jaouni, Soad K. ; Selim, Samy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c448t-31472fbf768dd56ddec09737379a2fa8672aad3a5e12e3c0c8d82f0debea9d163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Antimicrobial</topic><topic>antimicrobial properties</topic><topic>Antioxidant</topic><topic>antioxidant activity</topic><topic>Applied Microbiology</topic><topic>Aspergillus niger</topic><topic>Bacillus subtilis</topic><topic>Bimetallic</topic><topic>Biofilms</topic><topic>Biological Techniques</topic><topic>Bioorganic Chemistry</topic><topic>Biopolymers</topic><topic>Candida albicans</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Chitosan</topic><topic>class</topic><topic>Coprecipitation</topic><topic>Cytotoxicity</topic><topic>E coli</topic><topic>Escherichia coli</topic><topic>Ferric oxide</topic><topic>Fourier transforms</topic><topic>Infrared radiation</topic><topic>Iron</topic><topic>Metal oxides</topic><topic>Metals</topic><topic>Nanocomposite</topic><topic>Nanocomposites</topic><topic>Nanoparticles</topic><topic>oxygen</topic><topic>Pseudomonas aeruginosa</topic><topic>Scavenging</topic><topic>Staphylococcus aureus</topic><topic>vibration</topic><topic>Wounds</topic><topic>X-ray diffraction</topic><topic>Zinc oxide</topic><topic>농학</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Al-Rajhi, Aisha M. H.</creatorcontrib><creatorcontrib>Abdelghany, Tarek M.</creatorcontrib><creatorcontrib>Almuhayawi, Mohammed S.</creatorcontrib><creatorcontrib>Alruhaili, Mohammed H.</creatorcontrib><creatorcontrib>Al Jaouni, Soad K.</creatorcontrib><creatorcontrib>Selim, Samy</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Database</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Biological Sciences</collection><collection>Agricultural Science Database</collection><collection>Biological Science Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest Publicly Available Content Database</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>DOAJ Directory of Open Access Journals</collection><collection>Korean Citation Index</collection><jtitle>Applied biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Al-Rajhi, Aisha M. H.</au><au>Abdelghany, Tarek M.</au><au>Almuhayawi, Mohammed S.</au><au>Alruhaili, Mohammed H.</au><au>Al Jaouni, Soad K.</au><au>Selim, Samy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The green approach of chitosan/Fe2O3/ZnO-nanocomposite synthesis with an evaluation of its biological activities</atitle><jtitle>Applied biological chemistry</jtitle><stitle>Appl Biol Chem</stitle><date>2024-12-01</date><risdate>2024</risdate><volume>67</volume><issue>1</issue><spage>75</spage><epage>75</epage><pages>75-75</pages><artnum>75</artnum><issn>2468-0842</issn><issn>2468-0834</issn><eissn>2468-0842</eissn><abstract>Biopolymers embedded with nanoparticles of metal oxides (MOs) demonstrate a wide range of bio-functions. Chitosan-incorporated MOs are an interesting class of support matrices for enhancing the biological function, compared to other support matrices. Therefore, the importance of this study lies in exploiting chitosan as a carrier not of one metal as in previous studies, but of two metals in the form of a nanocomposite to carry out several biological functions. The coprecipitation approach was employed to synthesize chitosan/Fe 2 O 3 /ZnO-nanocomposite in the present research. The characterization of chitosan/Fe 2 O 3 /ZnO-nanocomposite was performed to find out the morphology and dispersion properties of chitosan/Fe 2 O 3 /ZnO-nanocomposite. The X-ray diffraction (XRD) investigation revealed that these were crystalline. Fourier transforms infrared (FTIR) spectrum bands were viewed at 400/cm and 900/cm, due to the stretching vibration of Fe and Zn oxygen bond. TEM showed that chitosan/Fe 2 O 3 /ZnO-nanocomposite was of 20–95 nm in size. chitosan/Fe 2 O 3 /ZnO-nanocomposite exhibited inhibitory potential against Staphylococcus aureus , Bacillus subtilis, Escherichia coli , and Candida albicans with inhibition zones of 25 ± 0.1, 28 ± 0.2, 27 ± 0.1, and 27 ± 0.2 mm, respectively while didn’t inhibited Aspergillus niger . MIC value of nanocomposite was 15.62 ± 0.33 µg/mL for C. albicans, B. subtilis and E. coli , while it was 62.50 ± 0.66 µg/mL for Pseudomonas aeruginosa . Ranged values of nanocomposite MBC (15.62 ± 0.33 to 125 ± 1 µg/mL) were attributed to all tested bacteria. Different concentrations of chitosan/Fe 2 O 3 /ZnO-nanocomposite MBC (25, 50, and 75%) reflected anti-biofilm activity against E. coli (85.0, 93.2, and 96.0%), B. subtilis (84.88, 92.21, and 96.99%), S. aureus 81.64, 90.52, and 94.64%) and P. aurogenosa (90.11, 94.43, and 98.24%), respectively. The differences in the levels of antimicrobial activities may depend on the type of examined microbes. Antioxidant activity of chitosan/Fe 2 O 3 /ZnO-nanocomposite was recorded with excellent IC 50 values of 16.06 and 32.6 µg/mL using DPPH and ABTS scavenging, respectively. Wound heal by chitosan/Fe 2 O 3 /ZnO-nanocomposite was achieved with 100% compared to the untreated cells (76.75% of wound closer). The cytotoxicity outcomes showed that the IC 50 of the chitosan/Fe 2 O 3 /ZnO-nanocomposite was 564.32 ± 1.46 µg/mL normal WI-38 cells. Based on the achieved findings, the chitosan/Fe 2 O 3 /ZnO-nanocomposite is a very promising agent for perform pharmacological activities.</abstract><cop>Singapore</cop><pub>Springer Nature Singapore</pub><doi>10.1186/s13765-024-00926-2</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-6418-5890</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2468-0842
ispartof Applied Biological Chemistry, 2024, 67(0), , pp.1-13
issn 2468-0842
2468-0834
2468-0842
language eng
recordid cdi_nrf_kci_oai_kci_go_kr_ARTI_10621078
source Springer Nature Link Journals Open Access; ProQuest Publicly Available Content Database
subjects Antimicrobial
antimicrobial properties
Antioxidant
antioxidant activity
Applied Microbiology
Aspergillus niger
Bacillus subtilis
Bimetallic
Biofilms
Biological Techniques
Bioorganic Chemistry
Biopolymers
Candida albicans
Chemistry
Chemistry and Materials Science
Chitosan
class
Coprecipitation
Cytotoxicity
E coli
Escherichia coli
Ferric oxide
Fourier transforms
Infrared radiation
Iron
Metal oxides
Metals
Nanocomposite
Nanocomposites
Nanoparticles
oxygen
Pseudomonas aeruginosa
Scavenging
Staphylococcus aureus
vibration
Wounds
X-ray diffraction
Zinc oxide
농학
title The green approach of chitosan/Fe2O3/ZnO-nanocomposite synthesis with an evaluation of its biological activities
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-03-07T09%3A28%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_nrf_k&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20green%20approach%20of%20chitosan/Fe2O3/ZnO-nanocomposite%20synthesis%20with%20an%20evaluation%20of%20its%20biological%20activities&rft.jtitle=Applied%20biological%20chemistry&rft.au=Al-Rajhi,%20Aisha%20M.%20H.&rft.date=2024-12-01&rft.volume=67&rft.issue=1&rft.spage=75&rft.epage=75&rft.pages=75-75&rft.artnum=75&rft.issn=2468-0842&rft.eissn=2468-0842&rft_id=info:doi/10.1186/s13765-024-00926-2&rft_dat=%3Cproquest_nrf_k%3E3153761218%3C/proquest_nrf_k%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c448t-31472fbf768dd56ddec09737379a2fa8672aad3a5e12e3c0c8d82f0debea9d163%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3098051187&rft_id=info:pmid/&rfr_iscdi=true