Loading…

Different development patterns of reward behaviors induced by ketamine and JWH-018 in striatal GAD67 knockdown mice

Glutamic acid decarboxylase 67 (GAD67) is a gamma-aminobutyric acid (GABA) synthesis enzyme associated with the function of other neurotransmitter receptors, such as the N-methyl-D-aspartate (NMDA) receptor and cannabinoid receptor 1. However, the role of GAD67 in the development of different abused...

Full description

Saved in:
Bibliographic Details
Published in:Journal of veterinary science (Suwŏn-si, Korea) 2024, 25(5), , pp.0-0
Main Authors: Gu, Sun Mi, Hong, Eunchong, Seo, Sowoon, Kim, Sanghyeon, Yoon, Seong Shoon, Cha, Hye Jin, Yun, Jaesuk
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Glutamic acid decarboxylase 67 (GAD67) is a gamma-aminobutyric acid (GABA) synthesis enzyme associated with the function of other neurotransmitter receptors, such as the N-methyl-D-aspartate (NMDA) receptor and cannabinoid receptor 1. However, the role of GAD67 in the development of different abused drug-induced reward behaviors remains unknown. In order to elucidate the mechanisms of substance use disorder, it is crucial to study changes in biomarkers within the brain's reward circuit induced by drug use. The study was designed to examine the effects of the downregulation of GAD67 expression in the dorsal striatum on reward behavior development. We evaluated the effects of GAD67 knockdown on depression-like behavior and anxiety using the forced swim test and elevated plus maze test in a mouse model. We further determined the effects of GAD67 knockdown on ketamine- and JWH-018-induced conditioned place preference (CPP). Knockdown of GAD67 in the dorsal striatum of mice increased depression-like behavior, but it decreased anxiety. Moreover, the CPP score on the NMDA receptor antagonist ketamine was increased by GAD67 knockdown, whereas the administration of JWH-018, a cannabinoid receptor agonist, did not affect the CPP score in the GAD67 knockdown mice group compared with the control group. These results suggest that striatal GAD67 reduces GABAergic neuronal activity and may cause ketamine-induced NMDA receptor inhibition. Consequently, GAD67 downregulation induces vulnerability to the drug reward behavior of ketamine.
ISSN:1229-845X
1976-555X
1976-555X
DOI:10.4142/jvs.23325