Loading…

Hepatocyte-specific RIG-I loss attenuates metabolic dysfunction-associated steatotic liver disease in mice via changes in mitochondrial respiration and metabolite profiles

Pattern recognition receptor (PRR)-mediated inflammation is an important determinant of the initiation and progression of metabolic diseases such as metabolic dysfunction-associated steatotic liver disease (MASLD). In this study, we investigated whether RIG-I is involved in hepatic metabolic reprogr...

Full description

Saved in:
Bibliographic Details
Published in:Toxicological research (Seoul) 2024, 40(4), , pp.683-695
Main Authors: Seok, Jin Kyung, Yang, Gabsik, Jee, Jung In, Kang, Han Chang, Cho, Yong-Yeon, Lee, Hye Suk, Lee, Joo Young
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Pattern recognition receptor (PRR)-mediated inflammation is an important determinant of the initiation and progression of metabolic diseases such as metabolic dysfunction-associated steatotic liver disease (MASLD). In this study, we investigated whether RIG-I is involved in hepatic metabolic reprogramming in a high-fat diet (HFD)-induced MASLD model in hepatocyte-specific RIG-I-KO (RIG-I ∆hep ) mice. Our study revealed that hepatic deficiency of RIG-I improved HFD-induced metabolic imbalances, including glucose impairment and insulin resistance. Hepatic steatosis and liver triglyceride levels were reduced in RIG-I-deficient hepatocytes in HFD-induced MASLD mice, and this was accompanied by the reduced expression of lipogenesis genes, such as PPARγ, Dga2, and Pck1. Hepatic RIG-I deficiency alters whole-body metabolic rates in the HFD-induced MASLD model; there is higher energy consumption in RIG-I ∆hep mice. Deletion of RIG-I activated glycolysis and tricarboxylic acid (TCA) cycle-related metabolites in hepatocytes from both HFD-induced MASLD mice and methionine-choline-deficient diet (MCD)-fed mice. RIG-I deficiency enhanced AMPK activation and mitochondrial function in hepatocytes from HFD-induced MASLD mice. These findings indicate that deletion of RIG-I can activate cellular metabolism in hepatocytes by switching on both glycolysis and mitochondrial respiration, resulting in metabolic changes induced by a HFD and stimulation of mitochondrial activity. In summary, RIG-I may be a key regulator of cellular metabolism that influences the development of metabolic diseases such as MASLD.
ISSN:1976-8257
2234-2753
DOI:10.1007/s43188-024-00264-x