Loading…

ECM stiffness regulates calcium influx into mitochondria via tubulin and VDAC1 activity

Calcium ions (Ca 2+ ) play pivotal roles in regulating numerous cellular functions, including metabolism and growth, in normal and cancerous cells. Consequently, Ca 2+ signaling is a vital determinant of cell fate and influences both cell survival and death. These intracellular signals are susceptib...

Full description

Saved in:
Bibliographic Details
Published in:Animal cells and systems 2024, 28(1), , pp.417-427
Main Authors: Kim, Minji, Han, Kiseok, Choi, Gyuho, Ahn, Sanghyun, Suh, Jung-Soo, Kim, Tae-Jin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c373t-3547f7d9d267a86418e83f8104db721011240c2caff8990d98c4026c20566bbc3
container_end_page 427
container_issue 1
container_start_page 417
container_title Animal cells and systems
container_volume 28
creator Kim, Minji
Han, Kiseok
Choi, Gyuho
Ahn, Sanghyun
Suh, Jung-Soo
Kim, Tae-Jin
description Calcium ions (Ca 2+ ) play pivotal roles in regulating numerous cellular functions, including metabolism and growth, in normal and cancerous cells. Consequently, Ca 2+ signaling is a vital determinant of cell fate and influences both cell survival and death. These intracellular signals are susceptible to modulation by various factors, including changes in the extracellular environment, which leads to mechanical alterations. However, the effect of extracellular matrix (ECM) stiffness variations on intracellular Ca 2+ signaling remains underexplored. In this study, we aimed to elucidate the mechanisms of Ca 2+ regulation through the mitochondria, which are crucial to Ca 2+ homeostasis. We investigated how Ca 2+ regulatory mechanisms adapt to different levels of ECM stiffness by simultaneously imaging the mitochondria and endoplasmic reticulum (ER) in live cells using genetically encoded biosensors. Our findings revealed that the uptake of mitochondrial Ca 2+ through Voltage-Dependent Anion Channel 1 (VDAC1), facilitated by intracellular tubulin, is influenced by ECM stiffness. Unraveling these Ca 2+ regulatory mechanisms under various conditions offers a novel perspective for advancing biomedical studies involving Ca 2+ signaling.
doi_str_mv 10.1080/19768354.2024.2393811
format article
fullrecord <record><control><sourceid>proquest_nrf_k</sourceid><recordid>TN_cdi_nrf_kci_oai_kci_go_kr_ARTI_10655109</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_4dc624381480439890943f8e22033f64</doaj_id><sourcerecordid>3099858469</sourcerecordid><originalsourceid>FETCH-LOGICAL-c373t-3547f7d9d267a86418e83f8104db721011240c2caff8990d98c4026c20566bbc3</originalsourceid><addsrcrecordid>eNp9kUtv1DAUhSMEotPCTwBFYoOQUvyKY-8YDQVGKkJCBZaWx4_BUydubad0_j3OZNoFCxb2la3vnnt0T1W9guAcAgbeQ95RhltyjgAqF-aYQfikWiDYwgYR1j6tFhPTTNBJdZrSDgCKAOPPqxPMESoPvqh-Xay-1ik7aweTUh3NdvQym1Qr6ZUb-9oN1o_3peRQ9y4H9TsMOjpZ35WTx83o3VDLQdc_Py5XsJYquzuX9y-qZ1b6ZF4e61n149PF1epLc_nt83q1vGwU7nBuirfOdpprRDvJKIHMMGwZBERvOgQBhIgAhZS0lnEONGeKAEQVAi2lm43CZ9W7WXeIVlwrJ4J0h7oN4jqK5fertYCAti0EvMDrGdZB7sRNdL2M-0PH4SPErZAxO-WNIFpRRMpOCQMEc8YBJ8WYKXvD2FJStN7OWjcx3I4mZdG7pIz3cjBhTAIDzlnLCJ3GvvkH3YUxDmUtAkPS4pbTDhWqnSkVQ0rR2EeDEIgpcvEQuZgiF8fIS9_ro_q46Y1-7HrIuAAfZqBEGWIv_4Totchy70O0UQ7KTT7-O-MvrGG2Fg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3145359672</pqid></control><display><type>article</type><title>ECM stiffness regulates calcium influx into mitochondria via tubulin and VDAC1 activity</title><source>Open Access: PubMed Central</source><source>Taylor &amp; Francis Open Access</source><source>ProQuest - Publicly Available Content Database</source><creator>Kim, Minji ; Han, Kiseok ; Choi, Gyuho ; Ahn, Sanghyun ; Suh, Jung-Soo ; Kim, Tae-Jin</creator><creatorcontrib>Kim, Minji ; Han, Kiseok ; Choi, Gyuho ; Ahn, Sanghyun ; Suh, Jung-Soo ; Kim, Tae-Jin</creatorcontrib><description>Calcium ions (Ca 2+ ) play pivotal roles in regulating numerous cellular functions, including metabolism and growth, in normal and cancerous cells. Consequently, Ca 2+ signaling is a vital determinant of cell fate and influences both cell survival and death. These intracellular signals are susceptible to modulation by various factors, including changes in the extracellular environment, which leads to mechanical alterations. However, the effect of extracellular matrix (ECM) stiffness variations on intracellular Ca 2+ signaling remains underexplored. In this study, we aimed to elucidate the mechanisms of Ca 2+ regulation through the mitochondria, which are crucial to Ca 2+ homeostasis. We investigated how Ca 2+ regulatory mechanisms adapt to different levels of ECM stiffness by simultaneously imaging the mitochondria and endoplasmic reticulum (ER) in live cells using genetically encoded biosensors. Our findings revealed that the uptake of mitochondrial Ca 2+ through Voltage-Dependent Anion Channel 1 (VDAC1), facilitated by intracellular tubulin, is influenced by ECM stiffness. Unraveling these Ca 2+ regulatory mechanisms under various conditions offers a novel perspective for advancing biomedical studies involving Ca 2+ signaling.</description><identifier>ISSN: 1976-8354</identifier><identifier>EISSN: 2151-2485</identifier><identifier>DOI: 10.1080/19768354.2024.2393811</identifier><identifier>PMID: 39220629</identifier><language>eng</language><publisher>England: Taylor &amp; Francis</publisher><subject>Biosensors ; Calcium ; Calcium (extracellular) ; Calcium (intracellular) ; Calcium (mitochondrial) ; Calcium (reticular) ; Calcium channels (voltage-gated) ; Calcium homeostasis ; Calcium imaging ; Calcium influx ; Calcium ions ; Calcium metabolism ; Calcium signalling ; Cell death ; Cell fate ; Cell survival ; ECM stiffness ; Endoplasmic reticulum ; Extracellular matrix ; Genetic code ; Homeostasis ; Intracellular ; Intracellular signalling ; Ion channels ; live cell imaging ; Mechanical properties ; Mitochondria ; Regulatory mechanisms (biology) ; Stiffness ; Tubulin ; VDAC1 ; 생물학</subject><ispartof>Animal Cells and Systems, 2024, 28(1), , pp.417-427</ispartof><rights>2024 The Author(s). Published by Informa UK Limited, trading as Taylor &amp; Francis Group 2024</rights><rights>2024 The Author(s). Published by Informa UK Limited, trading as Taylor &amp; Francis Group.</rights><rights>2024 The Author(s). Published by Informa UK Limited, trading as Taylor &amp; Francis Group. This work is licensed under the Creative Commons Attribution – Non-Commercial License http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c373t-3547f7d9d267a86418e83f8104db721011240c2caff8990d98c4026c20566bbc3</cites><orcidid>0000-0001-7678-0478</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/19768354.2024.2393811$$EPDF$$P50$$Ginformaworld$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3145359672?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27502,27924,27925,37012,37013,44590,59143,59144</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39220629$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003147401$$DAccess content in National Research Foundation of Korea (NRF)$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Minji</creatorcontrib><creatorcontrib>Han, Kiseok</creatorcontrib><creatorcontrib>Choi, Gyuho</creatorcontrib><creatorcontrib>Ahn, Sanghyun</creatorcontrib><creatorcontrib>Suh, Jung-Soo</creatorcontrib><creatorcontrib>Kim, Tae-Jin</creatorcontrib><title>ECM stiffness regulates calcium influx into mitochondria via tubulin and VDAC1 activity</title><title>Animal cells and systems</title><addtitle>Anim Cells Syst (Seoul)</addtitle><description>Calcium ions (Ca 2+ ) play pivotal roles in regulating numerous cellular functions, including metabolism and growth, in normal and cancerous cells. Consequently, Ca 2+ signaling is a vital determinant of cell fate and influences both cell survival and death. These intracellular signals are susceptible to modulation by various factors, including changes in the extracellular environment, which leads to mechanical alterations. However, the effect of extracellular matrix (ECM) stiffness variations on intracellular Ca 2+ signaling remains underexplored. In this study, we aimed to elucidate the mechanisms of Ca 2+ regulation through the mitochondria, which are crucial to Ca 2+ homeostasis. We investigated how Ca 2+ regulatory mechanisms adapt to different levels of ECM stiffness by simultaneously imaging the mitochondria and endoplasmic reticulum (ER) in live cells using genetically encoded biosensors. Our findings revealed that the uptake of mitochondrial Ca 2+ through Voltage-Dependent Anion Channel 1 (VDAC1), facilitated by intracellular tubulin, is influenced by ECM stiffness. Unraveling these Ca 2+ regulatory mechanisms under various conditions offers a novel perspective for advancing biomedical studies involving Ca 2+ signaling.</description><subject>Biosensors</subject><subject>Calcium</subject><subject>Calcium (extracellular)</subject><subject>Calcium (intracellular)</subject><subject>Calcium (mitochondrial)</subject><subject>Calcium (reticular)</subject><subject>Calcium channels (voltage-gated)</subject><subject>Calcium homeostasis</subject><subject>Calcium imaging</subject><subject>Calcium influx</subject><subject>Calcium ions</subject><subject>Calcium metabolism</subject><subject>Calcium signalling</subject><subject>Cell death</subject><subject>Cell fate</subject><subject>Cell survival</subject><subject>ECM stiffness</subject><subject>Endoplasmic reticulum</subject><subject>Extracellular matrix</subject><subject>Genetic code</subject><subject>Homeostasis</subject><subject>Intracellular</subject><subject>Intracellular signalling</subject><subject>Ion channels</subject><subject>live cell imaging</subject><subject>Mechanical properties</subject><subject>Mitochondria</subject><subject>Regulatory mechanisms (biology)</subject><subject>Stiffness</subject><subject>Tubulin</subject><subject>VDAC1</subject><subject>생물학</subject><issn>1976-8354</issn><issn>2151-2485</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>0YH</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kUtv1DAUhSMEotPCTwBFYoOQUvyKY-8YDQVGKkJCBZaWx4_BUydubad0_j3OZNoFCxb2la3vnnt0T1W9guAcAgbeQ95RhltyjgAqF-aYQfikWiDYwgYR1j6tFhPTTNBJdZrSDgCKAOPPqxPMESoPvqh-Xay-1ik7aweTUh3NdvQym1Qr6ZUb-9oN1o_3peRQ9y4H9TsMOjpZ35WTx83o3VDLQdc_Py5XsJYquzuX9y-qZ1b6ZF4e61n149PF1epLc_nt83q1vGwU7nBuirfOdpprRDvJKIHMMGwZBERvOgQBhIgAhZS0lnEONGeKAEQVAi2lm43CZ9W7WXeIVlwrJ4J0h7oN4jqK5fertYCAti0EvMDrGdZB7sRNdL2M-0PH4SPErZAxO-WNIFpRRMpOCQMEc8YBJ8WYKXvD2FJStN7OWjcx3I4mZdG7pIz3cjBhTAIDzlnLCJ3GvvkH3YUxDmUtAkPS4pbTDhWqnSkVQ0rR2EeDEIgpcvEQuZgiF8fIS9_ro_q46Y1-7HrIuAAfZqBEGWIv_4Totchy70O0UQ7KTT7-O-MvrGG2Fg</recordid><startdate>20241231</startdate><enddate>20241231</enddate><creator>Kim, Minji</creator><creator>Han, Kiseok</creator><creator>Choi, Gyuho</creator><creator>Ahn, Sanghyun</creator><creator>Suh, Jung-Soo</creator><creator>Kim, Tae-Jin</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Ltd</general><general>Taylor &amp; Francis Group</general><general>한국통합생물학회</general><scope>0YH</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SN</scope><scope>7TK</scope><scope>7TM</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><scope>DOA</scope><scope>ACYCR</scope><orcidid>https://orcid.org/0000-0001-7678-0478</orcidid></search><sort><creationdate>20241231</creationdate><title>ECM stiffness regulates calcium influx into mitochondria via tubulin and VDAC1 activity</title><author>Kim, Minji ; Han, Kiseok ; Choi, Gyuho ; Ahn, Sanghyun ; Suh, Jung-Soo ; Kim, Tae-Jin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c373t-3547f7d9d267a86418e83f8104db721011240c2caff8990d98c4026c20566bbc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Biosensors</topic><topic>Calcium</topic><topic>Calcium (extracellular)</topic><topic>Calcium (intracellular)</topic><topic>Calcium (mitochondrial)</topic><topic>Calcium (reticular)</topic><topic>Calcium channels (voltage-gated)</topic><topic>Calcium homeostasis</topic><topic>Calcium imaging</topic><topic>Calcium influx</topic><topic>Calcium ions</topic><topic>Calcium metabolism</topic><topic>Calcium signalling</topic><topic>Cell death</topic><topic>Cell fate</topic><topic>Cell survival</topic><topic>ECM stiffness</topic><topic>Endoplasmic reticulum</topic><topic>Extracellular matrix</topic><topic>Genetic code</topic><topic>Homeostasis</topic><topic>Intracellular</topic><topic>Intracellular signalling</topic><topic>Ion channels</topic><topic>live cell imaging</topic><topic>Mechanical properties</topic><topic>Mitochondria</topic><topic>Regulatory mechanisms (biology)</topic><topic>Stiffness</topic><topic>Tubulin</topic><topic>VDAC1</topic><topic>생물학</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Minji</creatorcontrib><creatorcontrib>Han, Kiseok</creatorcontrib><creatorcontrib>Choi, Gyuho</creatorcontrib><creatorcontrib>Ahn, Sanghyun</creatorcontrib><creatorcontrib>Suh, Jung-Soo</creatorcontrib><creatorcontrib>Kim, Tae-Jin</creatorcontrib><collection>Taylor &amp; Francis Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Ecology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ProQuest Biological Science Journals</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>DOAJ Directory of Open Access Journals</collection><collection>Korean Citation Index</collection><jtitle>Animal cells and systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Minji</au><au>Han, Kiseok</au><au>Choi, Gyuho</au><au>Ahn, Sanghyun</au><au>Suh, Jung-Soo</au><au>Kim, Tae-Jin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ECM stiffness regulates calcium influx into mitochondria via tubulin and VDAC1 activity</atitle><jtitle>Animal cells and systems</jtitle><addtitle>Anim Cells Syst (Seoul)</addtitle><date>2024-12-31</date><risdate>2024</risdate><volume>28</volume><issue>1</issue><spage>417</spage><epage>427</epage><pages>417-427</pages><issn>1976-8354</issn><eissn>2151-2485</eissn><abstract>Calcium ions (Ca 2+ ) play pivotal roles in regulating numerous cellular functions, including metabolism and growth, in normal and cancerous cells. Consequently, Ca 2+ signaling is a vital determinant of cell fate and influences both cell survival and death. These intracellular signals are susceptible to modulation by various factors, including changes in the extracellular environment, which leads to mechanical alterations. However, the effect of extracellular matrix (ECM) stiffness variations on intracellular Ca 2+ signaling remains underexplored. In this study, we aimed to elucidate the mechanisms of Ca 2+ regulation through the mitochondria, which are crucial to Ca 2+ homeostasis. We investigated how Ca 2+ regulatory mechanisms adapt to different levels of ECM stiffness by simultaneously imaging the mitochondria and endoplasmic reticulum (ER) in live cells using genetically encoded biosensors. Our findings revealed that the uptake of mitochondrial Ca 2+ through Voltage-Dependent Anion Channel 1 (VDAC1), facilitated by intracellular tubulin, is influenced by ECM stiffness. Unraveling these Ca 2+ regulatory mechanisms under various conditions offers a novel perspective for advancing biomedical studies involving Ca 2+ signaling.</abstract><cop>England</cop><pub>Taylor &amp; Francis</pub><pmid>39220629</pmid><doi>10.1080/19768354.2024.2393811</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-7678-0478</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1976-8354
ispartof Animal Cells and Systems, 2024, 28(1), , pp.417-427
issn 1976-8354
2151-2485
language eng
recordid cdi_nrf_kci_oai_kci_go_kr_ARTI_10655109
source Open Access: PubMed Central; Taylor & Francis Open Access; ProQuest - Publicly Available Content Database
subjects Biosensors
Calcium
Calcium (extracellular)
Calcium (intracellular)
Calcium (mitochondrial)
Calcium (reticular)
Calcium channels (voltage-gated)
Calcium homeostasis
Calcium imaging
Calcium influx
Calcium ions
Calcium metabolism
Calcium signalling
Cell death
Cell fate
Cell survival
ECM stiffness
Endoplasmic reticulum
Extracellular matrix
Genetic code
Homeostasis
Intracellular
Intracellular signalling
Ion channels
live cell imaging
Mechanical properties
Mitochondria
Regulatory mechanisms (biology)
Stiffness
Tubulin
VDAC1
생물학
title ECM stiffness regulates calcium influx into mitochondria via tubulin and VDAC1 activity
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T12%3A43%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_nrf_k&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ECM%20stiffness%20regulates%20calcium%20influx%20into%20mitochondria%20via%20tubulin%20and%20VDAC1%20activity&rft.jtitle=Animal%20cells%20and%20systems&rft.au=Kim,%20Minji&rft.date=2024-12-31&rft.volume=28&rft.issue=1&rft.spage=417&rft.epage=427&rft.pages=417-427&rft.issn=1976-8354&rft.eissn=2151-2485&rft_id=info:doi/10.1080/19768354.2024.2393811&rft_dat=%3Cproquest_nrf_k%3E3099858469%3C/proquest_nrf_k%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c373t-3547f7d9d267a86418e83f8104db721011240c2caff8990d98c4026c20566bbc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3145359672&rft_id=info:pmid/39220629&rfr_iscdi=true