Loading…

Silicon carbide deformable mirror with 37 actuators for adaptive optics

We present a prototype of a silicon carbide (SiC) deformable mirror (DM) for high power laser applications. The DM has a continuous SiC faceplate, the diameter and the thickness of which are 100 mm and 2 mm, respectively, and 37 stack-type piezoelectric actuators arranged in a rectangular grid. Comp...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the Korean Physical Society 2015, 67(10), , pp.1882-1888
Main Authors: Ahn, Kyohoon, Rhee, Hyug-Gyo, Yang, Ho-Soon, Kihm, Hagyong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We present a prototype of a silicon carbide (SiC) deformable mirror (DM) for high power laser applications. The DM has a continuous SiC faceplate, the diameter and the thickness of which are 100 mm and 2 mm, respectively, and 37 stack-type piezoelectric actuators arranged in a rectangular grid. Compared with the glass faceplates used for conventional DMs, SiC has a high thermal diffusivity that effectively minimizes mirror distortions due to thermal gradients. The faceplate is thick enough for possible integration with monolithic cooling channels inside the faceplate. The faceplate without cooling channels presented in this paper has a high bending stiffness compared with glass DMs, but the proposed actuator configuration has flexure supports to reduce the shear stress at the adhesive while preserving optical performances. To examine the characteristics of the SiC DM, we simulated influence functions (IFs) by using a finite element analysis and then compared these results with the IF measured by using an optical interferometer. The optical performance of the DM was verified by generating Zernike polynomial modes based on the measured IF.
ISSN:0374-4884
1976-8524
DOI:10.3938/jkps.67.1882