Loading…

Influence of irradiation with low-energy helium ions on graphite and tungsten for fusion applications

Plasma-facing components (PFCs) in fusion devices are exposed to an irradiation environment of high particle flux. Among various candidate materials for PFCs, graphite is used as a first-wall material of the Korea Superconducting Tokamak Advanced Research (KSTAR) and tungsten is being strongly consi...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the Korean Physical Society 2013, 63(7), , pp.1422-1426
Main Authors: Kim, H. S., Noh, S. J., Kweon, J. J., Lee, Cheol Eui
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Plasma-facing components (PFCs) in fusion devices are exposed to an irradiation environment of high particle flux. Among various candidate materials for PFCs, graphite is used as a first-wall material of the Korea Superconducting Tokamak Advanced Research (KSTAR) and tungsten is being strongly considered as a divertor material of the international thermonuclear experimental reactor (ITER). In this experiment, graphite and tungsten targets were irradiated by using low-energy helium ions, and the irradiation’s influence on each target was studied with particular emphasis on the surface change. Changes in the surface morphology were observed by using scanning electron microscopy (SEM); induced disorders in the structure were investigated by using X-ray diffraction (XRD), Raman spectroscopy, and electron spin resonance (ESR) measurements.
ISSN:0374-4884
1976-8524
DOI:10.3938/jkps.63.1422