Loading…

Focal spot calibration in a digital breast tomosynthesis system

Digital breast tomosynthesis (DBT) technology is a promising modality for the early detection of breast cancer and could provide clear diagnostic images in which the effect of tissue overlap is alleviated. Accurate calibration of the system geometry is essential for successful image reconstruction i...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the Korean Physical Society 2012, 60(9), , pp.1457-1463
Main Authors: Choi, Jaegu, Hwang, Sun-Jo, Choi, Young-Wook
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Digital breast tomosynthesis (DBT) technology is a promising modality for the early detection of breast cancer and could provide clear diagnostic images in which the effect of tissue overlap is alleviated. Accurate calibration of the system geometry is essential for successful image reconstruction in DBT systems. The geometrical calibration of the focal spot in the X-ray tube at the detector plane is one of the most critical parameters of a DBT system. In this paper, a new method using a multi-hole collimator and an iterative calibration algorithm is reported in order to estimate the position of the focal spot at the detector plane. The iterative algorithm is based on the area-distance relationship in the collimator image. The linearity of this relationship has been verified both empirically and theoretically. A focal spot estimate has been achieved regardless of the location of the focal spot in the image. A total of 15 projection images acquired with the DBT system have been successfully reconstructed with geometric information about the focal spot position provided by our new method, and the focal spot estimate method proposed in this paper could be a useful solution for locating optical sources that cannot be viewed or accessed.
ISSN:0374-4884
1976-8524
DOI:10.3938/jkps.60.1457