Loading…
Stability analysis of time-delayed linear fractional-order systems
In this article, an exact and robust method for the determination of all the possible stability regions in the parametric space has been presented for the fractional order systems with time delay. Using the approach presented in this study, first, the transcendental terms have been eliminated from t...
Saved in:
Published in: | International journal of control, automation, and systems 2013, Automation, and Systems, 11(3), , pp.519-525 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c371t-9fae513355c74dfea6451a3cf7efbae351d6607dcaca1fcd084018b70024222b3 |
---|---|
cites | cdi_FETCH-LOGICAL-c371t-9fae513355c74dfea6451a3cf7efbae351d6607dcaca1fcd084018b70024222b3 |
container_end_page | 525 |
container_issue | 3 |
container_start_page | 519 |
container_title | International journal of control, automation, and systems |
container_volume | 11 |
creator | Pakzad, Mohammad Ali Pakzad, Sara Nekoui, Mohammad Ali |
description | In this article, an exact and robust method for the determination of all the possible stability regions in the parametric space has been presented for the fractional order systems with time delay. Using the approach presented in this study, first, the transcendental terms have been eliminated from the characteristic equation and then, all the locations on the imaginary axis crossed by the roots and also their direction of crossing have been calculated. Finally, the concept of the stability as a function of the time delay has been described for a general class of linear fractional order systems with several commensurate delays. Prior to the conclusion, several examples have been given to validate the results of the proposed approach. |
doi_str_mv | 10.1007/s12555-012-0164-4 |
format | article |
fullrecord | <record><control><sourceid>proquest_nrf_k</sourceid><recordid>TN_cdi_nrf_kci_oai_kci_go_kr_ARTI_129751</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2998110301</sourcerecordid><originalsourceid>FETCH-LOGICAL-c371t-9fae513355c74dfea6451a3cf7efbae351d6607dcaca1fcd084018b70024222b3</originalsourceid><addsrcrecordid>eNp1kDFPwzAQhS0EEqXwA9gisbAYzo7tJGOpKFSqhARlthzHrtymcbHTIf8elzCwMJze8r13dw-hWwIPBKB4jIRyzjEQmkYwzM7QhAJwzKCi52hCeFViwZi4RFcxbgGEoFUxQU8fvapd6_ohU51qh-hi5m3Wu73BjWnVYJqsdZ1RIbNB6d75RGEfGhOyOMTe7OM1urCqjebmV6foc_G8nr_i1dvLcj5bYZ0XpMeVVYaTPOdcF6yxRgnGicq1LYytlck5aYSAotFKK2J1AyUDUtYFAGWU0jqfovsxtwtW7rSTXrkf3Xi5C3L2vl5Kkp5KS6bobkQPwX8dTezl1h9DujxKkotSpDOAJYqMlA4-xmCsPAS3V2GQBOSpVTm2KlOr8tSqPHno6ImJ7TYm_En-1_QNa_R5qA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1368613304</pqid></control><display><type>article</type><title>Stability analysis of time-delayed linear fractional-order systems</title><source>ABI/INFORM Global</source><source>Springer Nature</source><creator>Pakzad, Mohammad Ali ; Pakzad, Sara ; Nekoui, Mohammad Ali</creator><creatorcontrib>Pakzad, Mohammad Ali ; Pakzad, Sara ; Nekoui, Mohammad Ali</creatorcontrib><description>In this article, an exact and robust method for the determination of all the possible stability regions in the parametric space has been presented for the fractional order systems with time delay. Using the approach presented in this study, first, the transcendental terms have been eliminated from the characteristic equation and then, all the locations on the imaginary axis crossed by the roots and also their direction of crossing have been calculated. Finally, the concept of the stability as a function of the time delay has been described for a general class of linear fractional order systems with several commensurate delays. Prior to the conclusion, several examples have been given to validate the results of the proposed approach.</description><identifier>ISSN: 1598-6446</identifier><identifier>EISSN: 2005-4092</identifier><identifier>DOI: 10.1007/s12555-012-0164-4</identifier><language>eng</language><publisher>Heidelberg: Institute of Control, Robotics and Systems and The Korean Institute of Electrical Engineers</publisher><subject>Computer engineering ; Control ; Electrical engineering ; Engineering ; Mechatronics ; Numerical analysis ; Regular Paper ; Robotics ; Studies ; Systems stability ; 제어계측공학</subject><ispartof>International Journal of Control, 2013, Automation, and Systems, 11(3), , pp.519-525</ispartof><rights>Institute of Control, Robotics and Systems and The Korean Institute of Electrical Engineers and Springer-Verlag Berlin Heidelberg 2013</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c371t-9fae513355c74dfea6451a3cf7efbae351d6607dcaca1fcd084018b70024222b3</citedby><cites>FETCH-LOGICAL-c371t-9fae513355c74dfea6451a3cf7efbae351d6607dcaca1fcd084018b70024222b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/1368613304?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11688,27924,27925,36060,44363</link.rule.ids><backlink>$$Uhttps://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART001771402$$DAccess content in National Research Foundation of Korea (NRF)$$Hfree_for_read</backlink></links><search><creatorcontrib>Pakzad, Mohammad Ali</creatorcontrib><creatorcontrib>Pakzad, Sara</creatorcontrib><creatorcontrib>Nekoui, Mohammad Ali</creatorcontrib><title>Stability analysis of time-delayed linear fractional-order systems</title><title>International journal of control, automation, and systems</title><addtitle>Int. J. Control Autom. Syst</addtitle><description>In this article, an exact and robust method for the determination of all the possible stability regions in the parametric space has been presented for the fractional order systems with time delay. Using the approach presented in this study, first, the transcendental terms have been eliminated from the characteristic equation and then, all the locations on the imaginary axis crossed by the roots and also their direction of crossing have been calculated. Finally, the concept of the stability as a function of the time delay has been described for a general class of linear fractional order systems with several commensurate delays. Prior to the conclusion, several examples have been given to validate the results of the proposed approach.</description><subject>Computer engineering</subject><subject>Control</subject><subject>Electrical engineering</subject><subject>Engineering</subject><subject>Mechatronics</subject><subject>Numerical analysis</subject><subject>Regular Paper</subject><subject>Robotics</subject><subject>Studies</subject><subject>Systems stability</subject><subject>제어계측공학</subject><issn>1598-6446</issn><issn>2005-4092</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp1kDFPwzAQhS0EEqXwA9gisbAYzo7tJGOpKFSqhARlthzHrtymcbHTIf8elzCwMJze8r13dw-hWwIPBKB4jIRyzjEQmkYwzM7QhAJwzKCi52hCeFViwZi4RFcxbgGEoFUxQU8fvapd6_ohU51qh-hi5m3Wu73BjWnVYJqsdZ1RIbNB6d75RGEfGhOyOMTe7OM1urCqjebmV6foc_G8nr_i1dvLcj5bYZ0XpMeVVYaTPOdcF6yxRgnGicq1LYytlck5aYSAotFKK2J1AyUDUtYFAGWU0jqfovsxtwtW7rSTXrkf3Xi5C3L2vl5Kkp5KS6bobkQPwX8dTezl1h9DujxKkotSpDOAJYqMlA4-xmCsPAS3V2GQBOSpVTm2KlOr8tSqPHno6ImJ7TYm_En-1_QNa_R5qA</recordid><startdate>20130601</startdate><enddate>20130601</enddate><creator>Pakzad, Mohammad Ali</creator><creator>Pakzad, Sara</creator><creator>Nekoui, Mohammad Ali</creator><general>Institute of Control, Robotics and Systems and The Korean Institute of Electrical Engineers</general><general>Springer Nature B.V</general><general>제어·로봇·시스템학회</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>ACYCR</scope></search><sort><creationdate>20130601</creationdate><title>Stability analysis of time-delayed linear fractional-order systems</title><author>Pakzad, Mohammad Ali ; Pakzad, Sara ; Nekoui, Mohammad Ali</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c371t-9fae513355c74dfea6451a3cf7efbae351d6607dcaca1fcd084018b70024222b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Computer engineering</topic><topic>Control</topic><topic>Electrical engineering</topic><topic>Engineering</topic><topic>Mechatronics</topic><topic>Numerical analysis</topic><topic>Regular Paper</topic><topic>Robotics</topic><topic>Studies</topic><topic>Systems stability</topic><topic>제어계측공학</topic><toplevel>online_resources</toplevel><creatorcontrib>Pakzad, Mohammad Ali</creatorcontrib><creatorcontrib>Pakzad, Sara</creatorcontrib><creatorcontrib>Nekoui, Mohammad Ali</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Korean Citation Index</collection><jtitle>International journal of control, automation, and systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pakzad, Mohammad Ali</au><au>Pakzad, Sara</au><au>Nekoui, Mohammad Ali</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stability analysis of time-delayed linear fractional-order systems</atitle><jtitle>International journal of control, automation, and systems</jtitle><stitle>Int. J. Control Autom. Syst</stitle><date>2013-06-01</date><risdate>2013</risdate><volume>11</volume><issue>3</issue><spage>519</spage><epage>525</epage><pages>519-525</pages><issn>1598-6446</issn><eissn>2005-4092</eissn><abstract>In this article, an exact and robust method for the determination of all the possible stability regions in the parametric space has been presented for the fractional order systems with time delay. Using the approach presented in this study, first, the transcendental terms have been eliminated from the characteristic equation and then, all the locations on the imaginary axis crossed by the roots and also their direction of crossing have been calculated. Finally, the concept of the stability as a function of the time delay has been described for a general class of linear fractional order systems with several commensurate delays. Prior to the conclusion, several examples have been given to validate the results of the proposed approach.</abstract><cop>Heidelberg</cop><pub>Institute of Control, Robotics and Systems and The Korean Institute of Electrical Engineers</pub><doi>10.1007/s12555-012-0164-4</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1598-6446 |
ispartof | International Journal of Control, 2013, Automation, and Systems, 11(3), , pp.519-525 |
issn | 1598-6446 2005-4092 |
language | eng |
recordid | cdi_nrf_kci_oai_kci_go_kr_ARTI_129751 |
source | ABI/INFORM Global; Springer Nature |
subjects | Computer engineering Control Electrical engineering Engineering Mechatronics Numerical analysis Regular Paper Robotics Studies Systems stability 제어계측공학 |
title | Stability analysis of time-delayed linear fractional-order systems |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T17%3A33%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_nrf_k&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stability%20analysis%20of%20time-delayed%20linear%20fractional-order%20systems&rft.jtitle=International%20journal%20of%20control,%20automation,%20and%20systems&rft.au=Pakzad,%20Mohammad%20Ali&rft.date=2013-06-01&rft.volume=11&rft.issue=3&rft.spage=519&rft.epage=525&rft.pages=519-525&rft.issn=1598-6446&rft.eissn=2005-4092&rft_id=info:doi/10.1007/s12555-012-0164-4&rft_dat=%3Cproquest_nrf_k%3E2998110301%3C/proquest_nrf_k%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c371t-9fae513355c74dfea6451a3cf7efbae351d6607dcaca1fcd084018b70024222b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1368613304&rft_id=info:pmid/&rfr_iscdi=true |