Loading…

Stability analysis of time-delayed linear fractional-order systems

In this article, an exact and robust method for the determination of all the possible stability regions in the parametric space has been presented for the fractional order systems with time delay. Using the approach presented in this study, first, the transcendental terms have been eliminated from t...

Full description

Saved in:
Bibliographic Details
Published in:International journal of control, automation, and systems 2013, Automation, and Systems, 11(3), , pp.519-525
Main Authors: Pakzad, Mohammad Ali, Pakzad, Sara, Nekoui, Mohammad Ali
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c371t-9fae513355c74dfea6451a3cf7efbae351d6607dcaca1fcd084018b70024222b3
cites cdi_FETCH-LOGICAL-c371t-9fae513355c74dfea6451a3cf7efbae351d6607dcaca1fcd084018b70024222b3
container_end_page 525
container_issue 3
container_start_page 519
container_title International journal of control, automation, and systems
container_volume 11
creator Pakzad, Mohammad Ali
Pakzad, Sara
Nekoui, Mohammad Ali
description In this article, an exact and robust method for the determination of all the possible stability regions in the parametric space has been presented for the fractional order systems with time delay. Using the approach presented in this study, first, the transcendental terms have been eliminated from the characteristic equation and then, all the locations on the imaginary axis crossed by the roots and also their direction of crossing have been calculated. Finally, the concept of the stability as a function of the time delay has been described for a general class of linear fractional order systems with several commensurate delays. Prior to the conclusion, several examples have been given to validate the results of the proposed approach.
doi_str_mv 10.1007/s12555-012-0164-4
format article
fullrecord <record><control><sourceid>proquest_nrf_k</sourceid><recordid>TN_cdi_nrf_kci_oai_kci_go_kr_ARTI_129751</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2998110301</sourcerecordid><originalsourceid>FETCH-LOGICAL-c371t-9fae513355c74dfea6451a3cf7efbae351d6607dcaca1fcd084018b70024222b3</originalsourceid><addsrcrecordid>eNp1kDFPwzAQhS0EEqXwA9gisbAYzo7tJGOpKFSqhARlthzHrtymcbHTIf8elzCwMJze8r13dw-hWwIPBKB4jIRyzjEQmkYwzM7QhAJwzKCi52hCeFViwZi4RFcxbgGEoFUxQU8fvapd6_ohU51qh-hi5m3Wu73BjWnVYJqsdZ1RIbNB6d75RGEfGhOyOMTe7OM1urCqjebmV6foc_G8nr_i1dvLcj5bYZ0XpMeVVYaTPOdcF6yxRgnGicq1LYytlck5aYSAotFKK2J1AyUDUtYFAGWU0jqfovsxtwtW7rSTXrkf3Xi5C3L2vl5Kkp5KS6bobkQPwX8dTezl1h9DujxKkotSpDOAJYqMlA4-xmCsPAS3V2GQBOSpVTm2KlOr8tSqPHno6ImJ7TYm_En-1_QNa_R5qA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1368613304</pqid></control><display><type>article</type><title>Stability analysis of time-delayed linear fractional-order systems</title><source>ABI/INFORM Global</source><source>Springer Nature</source><creator>Pakzad, Mohammad Ali ; Pakzad, Sara ; Nekoui, Mohammad Ali</creator><creatorcontrib>Pakzad, Mohammad Ali ; Pakzad, Sara ; Nekoui, Mohammad Ali</creatorcontrib><description>In this article, an exact and robust method for the determination of all the possible stability regions in the parametric space has been presented for the fractional order systems with time delay. Using the approach presented in this study, first, the transcendental terms have been eliminated from the characteristic equation and then, all the locations on the imaginary axis crossed by the roots and also their direction of crossing have been calculated. Finally, the concept of the stability as a function of the time delay has been described for a general class of linear fractional order systems with several commensurate delays. Prior to the conclusion, several examples have been given to validate the results of the proposed approach.</description><identifier>ISSN: 1598-6446</identifier><identifier>EISSN: 2005-4092</identifier><identifier>DOI: 10.1007/s12555-012-0164-4</identifier><language>eng</language><publisher>Heidelberg: Institute of Control, Robotics and Systems and The Korean Institute of Electrical Engineers</publisher><subject>Computer engineering ; Control ; Electrical engineering ; Engineering ; Mechatronics ; Numerical analysis ; Regular Paper ; Robotics ; Studies ; Systems stability ; 제어계측공학</subject><ispartof>International Journal of Control, 2013, Automation, and Systems, 11(3), , pp.519-525</ispartof><rights>Institute of Control, Robotics and Systems and The Korean Institute of Electrical Engineers and Springer-Verlag Berlin Heidelberg 2013</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c371t-9fae513355c74dfea6451a3cf7efbae351d6607dcaca1fcd084018b70024222b3</citedby><cites>FETCH-LOGICAL-c371t-9fae513355c74dfea6451a3cf7efbae351d6607dcaca1fcd084018b70024222b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/1368613304?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11688,27924,27925,36060,44363</link.rule.ids><backlink>$$Uhttps://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART001771402$$DAccess content in National Research Foundation of Korea (NRF)$$Hfree_for_read</backlink></links><search><creatorcontrib>Pakzad, Mohammad Ali</creatorcontrib><creatorcontrib>Pakzad, Sara</creatorcontrib><creatorcontrib>Nekoui, Mohammad Ali</creatorcontrib><title>Stability analysis of time-delayed linear fractional-order systems</title><title>International journal of control, automation, and systems</title><addtitle>Int. J. Control Autom. Syst</addtitle><description>In this article, an exact and robust method for the determination of all the possible stability regions in the parametric space has been presented for the fractional order systems with time delay. Using the approach presented in this study, first, the transcendental terms have been eliminated from the characteristic equation and then, all the locations on the imaginary axis crossed by the roots and also their direction of crossing have been calculated. Finally, the concept of the stability as a function of the time delay has been described for a general class of linear fractional order systems with several commensurate delays. Prior to the conclusion, several examples have been given to validate the results of the proposed approach.</description><subject>Computer engineering</subject><subject>Control</subject><subject>Electrical engineering</subject><subject>Engineering</subject><subject>Mechatronics</subject><subject>Numerical analysis</subject><subject>Regular Paper</subject><subject>Robotics</subject><subject>Studies</subject><subject>Systems stability</subject><subject>제어계측공학</subject><issn>1598-6446</issn><issn>2005-4092</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp1kDFPwzAQhS0EEqXwA9gisbAYzo7tJGOpKFSqhARlthzHrtymcbHTIf8elzCwMJze8r13dw-hWwIPBKB4jIRyzjEQmkYwzM7QhAJwzKCi52hCeFViwZi4RFcxbgGEoFUxQU8fvapd6_ohU51qh-hi5m3Wu73BjWnVYJqsdZ1RIbNB6d75RGEfGhOyOMTe7OM1urCqjebmV6foc_G8nr_i1dvLcj5bYZ0XpMeVVYaTPOdcF6yxRgnGicq1LYytlck5aYSAotFKK2J1AyUDUtYFAGWU0jqfovsxtwtW7rSTXrkf3Xi5C3L2vl5Kkp5KS6bobkQPwX8dTezl1h9DujxKkotSpDOAJYqMlA4-xmCsPAS3V2GQBOSpVTm2KlOr8tSqPHno6ImJ7TYm_En-1_QNa_R5qA</recordid><startdate>20130601</startdate><enddate>20130601</enddate><creator>Pakzad, Mohammad Ali</creator><creator>Pakzad, Sara</creator><creator>Nekoui, Mohammad Ali</creator><general>Institute of Control, Robotics and Systems and The Korean Institute of Electrical Engineers</general><general>Springer Nature B.V</general><general>제어·로봇·시스템학회</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>ACYCR</scope></search><sort><creationdate>20130601</creationdate><title>Stability analysis of time-delayed linear fractional-order systems</title><author>Pakzad, Mohammad Ali ; Pakzad, Sara ; Nekoui, Mohammad Ali</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c371t-9fae513355c74dfea6451a3cf7efbae351d6607dcaca1fcd084018b70024222b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Computer engineering</topic><topic>Control</topic><topic>Electrical engineering</topic><topic>Engineering</topic><topic>Mechatronics</topic><topic>Numerical analysis</topic><topic>Regular Paper</topic><topic>Robotics</topic><topic>Studies</topic><topic>Systems stability</topic><topic>제어계측공학</topic><toplevel>online_resources</toplevel><creatorcontrib>Pakzad, Mohammad Ali</creatorcontrib><creatorcontrib>Pakzad, Sara</creatorcontrib><creatorcontrib>Nekoui, Mohammad Ali</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Korean Citation Index</collection><jtitle>International journal of control, automation, and systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pakzad, Mohammad Ali</au><au>Pakzad, Sara</au><au>Nekoui, Mohammad Ali</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stability analysis of time-delayed linear fractional-order systems</atitle><jtitle>International journal of control, automation, and systems</jtitle><stitle>Int. J. Control Autom. Syst</stitle><date>2013-06-01</date><risdate>2013</risdate><volume>11</volume><issue>3</issue><spage>519</spage><epage>525</epage><pages>519-525</pages><issn>1598-6446</issn><eissn>2005-4092</eissn><abstract>In this article, an exact and robust method for the determination of all the possible stability regions in the parametric space has been presented for the fractional order systems with time delay. Using the approach presented in this study, first, the transcendental terms have been eliminated from the characteristic equation and then, all the locations on the imaginary axis crossed by the roots and also their direction of crossing have been calculated. Finally, the concept of the stability as a function of the time delay has been described for a general class of linear fractional order systems with several commensurate delays. Prior to the conclusion, several examples have been given to validate the results of the proposed approach.</abstract><cop>Heidelberg</cop><pub>Institute of Control, Robotics and Systems and The Korean Institute of Electrical Engineers</pub><doi>10.1007/s12555-012-0164-4</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1598-6446
ispartof International Journal of Control, 2013, Automation, and Systems, 11(3), , pp.519-525
issn 1598-6446
2005-4092
language eng
recordid cdi_nrf_kci_oai_kci_go_kr_ARTI_129751
source ABI/INFORM Global; Springer Nature
subjects Computer engineering
Control
Electrical engineering
Engineering
Mechatronics
Numerical analysis
Regular Paper
Robotics
Studies
Systems stability
제어계측공학
title Stability analysis of time-delayed linear fractional-order systems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T17%3A33%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_nrf_k&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stability%20analysis%20of%20time-delayed%20linear%20fractional-order%20systems&rft.jtitle=International%20journal%20of%20control,%20automation,%20and%20systems&rft.au=Pakzad,%20Mohammad%20Ali&rft.date=2013-06-01&rft.volume=11&rft.issue=3&rft.spage=519&rft.epage=525&rft.pages=519-525&rft.issn=1598-6446&rft.eissn=2005-4092&rft_id=info:doi/10.1007/s12555-012-0164-4&rft_dat=%3Cproquest_nrf_k%3E2998110301%3C/proquest_nrf_k%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c371t-9fae513355c74dfea6451a3cf7efbae351d6607dcaca1fcd084018b70024222b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1368613304&rft_id=info:pmid/&rfr_iscdi=true