Loading…
LMI stability criterion with less variables for time-delay systems
Slack variables approach is an important technique for tackling the delay-dependent stability problem for systems with time-varying delay. In this paper, a new delay-dependent stability criterion is presented without introducing any slack variable. The technique is based on a simply integral inequal...
Saved in:
Published in: | International journal of control, automation, and systems 2009, Automation, and Systems, 7(4), , pp.530-535 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Slack variables approach is an important technique for tackling the delay-dependent stability problem for systems with time-varying delay. In this paper, a new delay-dependent stability criterion is presented without introducing any slack variable. The technique is based on a simply integral inequality. The result is shown to be equivalent to some existing ones but includes the least number of variables. Thus, redundant selection and computation can be avoided so that the computational burden can be largely reduced. Numerical examples are given to illustrate the effectiveness of the proposed stability conditions. |
---|---|
ISSN: | 1598-6446 2005-4092 |
DOI: | 10.1007/s12555-009-0404-4 |