Loading…

ON A CLASS OF FINSLER METRICS WITH ISOTROPIC BERWALD CURVATURE

In this paper, we study a class of Finsler metrics called general $\ab$-metrics, which are defined by a Riemannian metric $\a$ and a $1$-form $\b$. We show that every general $\ab$-metric with isotropic Berwald curvature is either a Berwald metric or a Randers metric. Moreover, a lot of new isotropi...

Full description

Saved in:
Bibliographic Details
Published in:Taehan Suhakhoe hoebo 2017, 54(2), , pp.399-416
Main Author: Zhu, Hongmei
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c307t-49f886110a0776fa205391fd9a47ba72de7dabb86bee1bdfb468f3c20adf558a3
cites
container_end_page 416
container_issue 2
container_start_page 399
container_title Taehan Suhakhoe hoebo
container_volume 54
creator Zhu, Hongmei
description In this paper, we study a class of Finsler metrics called general $\ab$-metrics, which are defined by a Riemannian metric $\a$ and a $1$-form $\b$. We show that every general $\ab$-metric with isotropic Berwald curvature is either a Berwald metric or a Randers metric. Moreover, a lot of new isotropic Berwald general $\ab$-metrics are constructed explicitly. KCI Citation Count: 4
doi_str_mv 10.4134/BKMS.b150784
format article
fullrecord <record><control><sourceid>nrf_cross</sourceid><recordid>TN_cdi_nrf_kci_oai_kci_go_kr_ARTI_1347456</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_kci_go_kr_ARTI_1347456</sourcerecordid><originalsourceid>FETCH-LOGICAL-c307t-49f886110a0776fa205391fd9a47ba72de7dabb86bee1bdfb468f3c20adf558a3</originalsourceid><addsrcrecordid>eNot0E1PgzAAxvHGaOKc3vwAvZrIbOkrFxOG4BrZMAXcsWmBmjmVBbz47d3cTs_ln-fwA-AWoxnFhD7MX5blzGGGhKRnYBKGhAYEYX4OJhhhFkhO6CW4GscPhCgLIz4Bj8UKxjDJ47KERQYztSrzVMNlWmmVlHCtqgVUZVHp4lUlcJ7qdZw_waTWb3FV6_QaXHj7OXY3p52COkurZBHkxbNK4jxoCBI_AY28lBxjZJEQ3NsQMRJh30aWCmdF2Haitc5J7roOu9Y7yqUnTYhs6xmTlkzB3fH3e_Bm22xMbzf_-96b7WBiXSmzFxCU8X17f2yboR_HofNmN2y-7PBrMDIHJ3NwMicn8gd0SlS4</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>ON A CLASS OF FINSLER METRICS WITH ISOTROPIC BERWALD CURVATURE</title><source>Freely Accessible Science Journals - check A-Z of ejournals</source><source>EZB Electronic Journals Library</source><creator>Zhu, Hongmei</creator><creatorcontrib>Zhu, Hongmei</creatorcontrib><description>In this paper, we study a class of Finsler metrics called general $\ab$-metrics, which are defined by a Riemannian metric $\a$ and a $1$-form $\b$. We show that every general $\ab$-metric with isotropic Berwald curvature is either a Berwald metric or a Randers metric. Moreover, a lot of new isotropic Berwald general $\ab$-metrics are constructed explicitly. KCI Citation Count: 4</description><identifier>ISSN: 1015-8634</identifier><identifier>EISSN: 2234-3016</identifier><identifier>DOI: 10.4134/BKMS.b150784</identifier><language>eng</language><publisher>대한수학회</publisher><subject>수학</subject><ispartof>대한수학회보, 2017, 54(2), , pp.399-416</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c307t-49f886110a0776fa205391fd9a47ba72de7dabb86bee1bdfb468f3c20adf558a3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002207276$$DAccess content in National Research Foundation of Korea (NRF)$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhu, Hongmei</creatorcontrib><title>ON A CLASS OF FINSLER METRICS WITH ISOTROPIC BERWALD CURVATURE</title><title>Taehan Suhakhoe hoebo</title><description>In this paper, we study a class of Finsler metrics called general $\ab$-metrics, which are defined by a Riemannian metric $\a$ and a $1$-form $\b$. We show that every general $\ab$-metric with isotropic Berwald curvature is either a Berwald metric or a Randers metric. Moreover, a lot of new isotropic Berwald general $\ab$-metrics are constructed explicitly. KCI Citation Count: 4</description><subject>수학</subject><issn>1015-8634</issn><issn>2234-3016</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNot0E1PgzAAxvHGaOKc3vwAvZrIbOkrFxOG4BrZMAXcsWmBmjmVBbz47d3cTs_ln-fwA-AWoxnFhD7MX5blzGGGhKRnYBKGhAYEYX4OJhhhFkhO6CW4GscPhCgLIz4Bj8UKxjDJ47KERQYztSrzVMNlWmmVlHCtqgVUZVHp4lUlcJ7qdZw_waTWb3FV6_QaXHj7OXY3p52COkurZBHkxbNK4jxoCBI_AY28lBxjZJEQ3NsQMRJh30aWCmdF2Haitc5J7roOu9Y7yqUnTYhs6xmTlkzB3fH3e_Bm22xMbzf_-96b7WBiXSmzFxCU8X17f2yboR_HofNmN2y-7PBrMDIHJ3NwMicn8gd0SlS4</recordid><startdate>20170301</startdate><enddate>20170301</enddate><creator>Zhu, Hongmei</creator><general>대한수학회</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ACYCR</scope></search><sort><creationdate>20170301</creationdate><title>ON A CLASS OF FINSLER METRICS WITH ISOTROPIC BERWALD CURVATURE</title><author>Zhu, Hongmei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c307t-49f886110a0776fa205391fd9a47ba72de7dabb86bee1bdfb468f3c20adf558a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>수학</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Hongmei</creatorcontrib><collection>CrossRef</collection><collection>Korean Citation Index</collection><jtitle>Taehan Suhakhoe hoebo</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Hongmei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ON A CLASS OF FINSLER METRICS WITH ISOTROPIC BERWALD CURVATURE</atitle><jtitle>Taehan Suhakhoe hoebo</jtitle><date>2017-03-01</date><risdate>2017</risdate><volume>54</volume><issue>2</issue><spage>399</spage><epage>416</epage><pages>399-416</pages><issn>1015-8634</issn><eissn>2234-3016</eissn><abstract>In this paper, we study a class of Finsler metrics called general $\ab$-metrics, which are defined by a Riemannian metric $\a$ and a $1$-form $\b$. We show that every general $\ab$-metric with isotropic Berwald curvature is either a Berwald metric or a Randers metric. Moreover, a lot of new isotropic Berwald general $\ab$-metrics are constructed explicitly. KCI Citation Count: 4</abstract><pub>대한수학회</pub><doi>10.4134/BKMS.b150784</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1015-8634
ispartof 대한수학회보, 2017, 54(2), , pp.399-416
issn 1015-8634
2234-3016
language eng
recordid cdi_nrf_kci_oai_kci_go_kr_ARTI_1347456
source Freely Accessible Science Journals - check A-Z of ejournals; EZB Electronic Journals Library
subjects 수학
title ON A CLASS OF FINSLER METRICS WITH ISOTROPIC BERWALD CURVATURE
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T13%3A06%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-nrf_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ON%20A%20CLASS%20OF%20FINSLER%20METRICS%20WITH%20ISOTROPIC%20BERWALD%20CURVATURE&rft.jtitle=Taehan%20Suhakhoe%20hoebo&rft.au=Zhu,%20Hongmei&rft.date=2017-03-01&rft.volume=54&rft.issue=2&rft.spage=399&rft.epage=416&rft.pages=399-416&rft.issn=1015-8634&rft.eissn=2234-3016&rft_id=info:doi/10.4134/BKMS.b150784&rft_dat=%3Cnrf_cross%3Eoai_kci_go_kr_ARTI_1347456%3C/nrf_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c307t-49f886110a0776fa205391fd9a47ba72de7dabb86bee1bdfb468f3c20adf558a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true