Loading…

Mean square detectability of LTI systems over finite-state digital block-fading channels

This paper studies the mean square quadratic (MSQ) detectability for multi-output networked systems over finite-state digital block-fading channels. The packet-loss rate of each digital fading channel depends on the channel power gain, as well as packet length and power level used for transmission....

Full description

Saved in:
Bibliographic Details
Published in:International journal of control, automation, and systems 2017, Automation, and Systems, 15(2), , pp.498-505
Main Authors: Chen, Wei, Zou, Yuanyuan, Xiao, Nan, Niu, Yugang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper studies the mean square quadratic (MSQ) detectability for multi-output networked systems over finite-state digital block-fading channels. The packet-loss rate of each digital fading channel depends on the channel power gain, as well as packet length and power level used for transmission. A finite-state random process is introduced to model time-varying fading channels, which characterizes various configurations of physical communication environment and/or different channel fading amplitudes. Necessary and sufficient conditions for MSQ detectability over finite-state Markov digital block-fading channels are given in the form of algebraic Riccati equations or linear matrix inequalities (LMIs). The estimation gain is given as a function of estimated/observed channel state. In addition, explicit conditions on network for MSQ detectability over finite-state independent identically distributed (i.i.d.) digital block-fading channels are presented in terms of the unstable poles of the multi-output plant. Finally, an application to Gilbert-Elliott channels (GECs) is provided to demonstrate the derived results.
ISSN:1598-6446
2005-4092
DOI:10.1007/s12555-015-0283-9