Loading…

Statistical model for forecasting uranium prices to estimate the nuclear fuel cycle cost

This paper presents a method for forecasting future uranium prices that is used as input data to calculate the uranium cost, which is a rational key cost driver of the nuclear fuel cycle cost. In other words, the statistical autoregressive integrated moving average (ARIMA) model and existing enginee...

Full description

Saved in:
Bibliographic Details
Published in:Nuclear engineering and technology 2017, 49(5), , pp.1063-1070
Main Authors: Kim, Sungki, Ko, Wonil, Nam, Hyoon, Kim, Chulmin, Chung, Yanghon, Bang, Sungsig
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c440t-31eda728dbf9cfd7956f8d61989806f6077806b4aebb25b079c4dcdebae59373
cites cdi_FETCH-LOGICAL-c440t-31eda728dbf9cfd7956f8d61989806f6077806b4aebb25b079c4dcdebae59373
container_end_page 1070
container_issue 5
container_start_page 1063
container_title Nuclear engineering and technology
container_volume 49
creator Kim, Sungki
Ko, Wonil
Nam, Hyoon
Kim, Chulmin
Chung, Yanghon
Bang, Sungsig
description This paper presents a method for forecasting future uranium prices that is used as input data to calculate the uranium cost, which is a rational key cost driver of the nuclear fuel cycle cost. In other words, the statistical autoregressive integrated moving average (ARIMA) model and existing engineering cost estimation method, the so-called escalation rate model, were subjected to a comparative analysis. When the uranium price was forecasted in 2015, the margin of error of the ARIMA model forecasting was calculated and found to be 5.4%, whereas the escalation rate model was found to have a margin of error of 7.32%. Thus, it was verified that the ARIMA model is more suitable than the escalation rate model at decreasing uncertainty in nuclear fuel cycle cost calculation.
doi_str_mv 10.1016/j.net.2017.05.007
format article
fullrecord <record><control><sourceid>elsevier_nrf_k</sourceid><recordid>TN_cdi_nrf_kci_oai_kci_go_kr_ARTI_1423685</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1738573317300992</els_id><doaj_id>oai_doaj_org_article_6ce440e81eb849528cfec584b0c58e19</doaj_id><sourcerecordid>S1738573317300992</sourcerecordid><originalsourceid>FETCH-LOGICAL-c440t-31eda728dbf9cfd7956f8d61989806f6077806b4aebb25b079c4dcdebae59373</originalsourceid><addsrcrecordid>eNp9UcGOFCEQJUYTx9UP8MbVQ7fQQEPH02aj6ySbmOgc9kZoKEZmexoDjMn-vTUzxqMHeKmi3kvxHiHvOes54-PHQ79C6wfGdc9Uz5h-QTbDIGQnlHl8STZcC9MpLcRr8qbWA2OjlJptyOOP5lqqLXm30GMOsNCYy_mAd9he9_RU3JpOR_qrJA-VtkwBH46uAW0_ga4nv4BDygm5_hkL6nNtb8mr6JYK7_7iDdl9-by7-9o9fLvf3t0-dF5K1jrBITg9mDDHycegJzVGE0Y-mcmwMY5Ma8RZOpjnQc1MT14GH2B2oCahxQ35cJVdS7RPPtns0gX32T4Ve_t9t7VcDmI0Cme319mQ3cHid46uPF8Il0Yue-sKOrGAHT3gemA4zEZOajA-gldGzgxv4BNq8auWL7nWAvGfHmf2nIg9WEzEnhOxTFlMBDmfrhxAP34nKLb6BKuHkNDthluk_7D_AGP8lMc</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Statistical model for forecasting uranium prices to estimate the nuclear fuel cycle cost</title><source>ScienceDirect Additional Titles</source><creator>Kim, Sungki ; Ko, Wonil ; Nam, Hyoon ; Kim, Chulmin ; Chung, Yanghon ; Bang, Sungsig</creator><creatorcontrib>Kim, Sungki ; Ko, Wonil ; Nam, Hyoon ; Kim, Chulmin ; Chung, Yanghon ; Bang, Sungsig</creatorcontrib><description>This paper presents a method for forecasting future uranium prices that is used as input data to calculate the uranium cost, which is a rational key cost driver of the nuclear fuel cycle cost. In other words, the statistical autoregressive integrated moving average (ARIMA) model and existing engineering cost estimation method, the so-called escalation rate model, were subjected to a comparative analysis. When the uranium price was forecasted in 2015, the margin of error of the ARIMA model forecasting was calculated and found to be 5.4%, whereas the escalation rate model was found to have a margin of error of 7.32%. Thus, it was verified that the ARIMA model is more suitable than the escalation rate model at decreasing uncertainty in nuclear fuel cycle cost calculation.</description><identifier>ISSN: 1738-5733</identifier><identifier>EISSN: 2234-358X</identifier><identifier>DOI: 10.1016/j.net.2017.05.007</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>ARIMA Model ; Cost Driver ; Forecasting ; Nuclear Fuel Cycle Cost ; Uranium Price ; 원자력공학</subject><ispartof>Nuclear Engineering and Technology, 2017, 49(5), , pp.1063-1070</ispartof><rights>2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c440t-31eda728dbf9cfd7956f8d61989806f6077806b4aebb25b079c4dcdebae59373</citedby><cites>FETCH-LOGICAL-c440t-31eda728dbf9cfd7956f8d61989806f6077806b4aebb25b079c4dcdebae59373</cites><orcidid>0000-0003-2738-8335</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1738573317300992$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3535,27903,27904,45759</link.rule.ids><backlink>$$Uhttps://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002249747$$DAccess content in National Research Foundation of Korea (NRF)$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Sungki</creatorcontrib><creatorcontrib>Ko, Wonil</creatorcontrib><creatorcontrib>Nam, Hyoon</creatorcontrib><creatorcontrib>Kim, Chulmin</creatorcontrib><creatorcontrib>Chung, Yanghon</creatorcontrib><creatorcontrib>Bang, Sungsig</creatorcontrib><title>Statistical model for forecasting uranium prices to estimate the nuclear fuel cycle cost</title><title>Nuclear engineering and technology</title><description>This paper presents a method for forecasting future uranium prices that is used as input data to calculate the uranium cost, which is a rational key cost driver of the nuclear fuel cycle cost. In other words, the statistical autoregressive integrated moving average (ARIMA) model and existing engineering cost estimation method, the so-called escalation rate model, were subjected to a comparative analysis. When the uranium price was forecasted in 2015, the margin of error of the ARIMA model forecasting was calculated and found to be 5.4%, whereas the escalation rate model was found to have a margin of error of 7.32%. Thus, it was verified that the ARIMA model is more suitable than the escalation rate model at decreasing uncertainty in nuclear fuel cycle cost calculation.</description><subject>ARIMA Model</subject><subject>Cost Driver</subject><subject>Forecasting</subject><subject>Nuclear Fuel Cycle Cost</subject><subject>Uranium Price</subject><subject>원자력공학</subject><issn>1738-5733</issn><issn>2234-358X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9UcGOFCEQJUYTx9UP8MbVQ7fQQEPH02aj6ySbmOgc9kZoKEZmexoDjMn-vTUzxqMHeKmi3kvxHiHvOes54-PHQ79C6wfGdc9Uz5h-QTbDIGQnlHl8STZcC9MpLcRr8qbWA2OjlJptyOOP5lqqLXm30GMOsNCYy_mAd9he9_RU3JpOR_qrJA-VtkwBH46uAW0_ga4nv4BDygm5_hkL6nNtb8mr6JYK7_7iDdl9-by7-9o9fLvf3t0-dF5K1jrBITg9mDDHycegJzVGE0Y-mcmwMY5Ma8RZOpjnQc1MT14GH2B2oCahxQ35cJVdS7RPPtns0gX32T4Ve_t9t7VcDmI0Cme319mQ3cHid46uPF8Il0Yue-sKOrGAHT3gemA4zEZOajA-gldGzgxv4BNq8auWL7nWAvGfHmf2nIg9WEzEnhOxTFlMBDmfrhxAP34nKLb6BKuHkNDthluk_7D_AGP8lMc</recordid><startdate>201708</startdate><enddate>201708</enddate><creator>Kim, Sungki</creator><creator>Ko, Wonil</creator><creator>Nam, Hyoon</creator><creator>Kim, Chulmin</creator><creator>Chung, Yanghon</creator><creator>Bang, Sungsig</creator><general>Elsevier B.V</general><general>Elsevier</general><general>한국원자력학회</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><scope>ACYCR</scope><orcidid>https://orcid.org/0000-0003-2738-8335</orcidid></search><sort><creationdate>201708</creationdate><title>Statistical model for forecasting uranium prices to estimate the nuclear fuel cycle cost</title><author>Kim, Sungki ; Ko, Wonil ; Nam, Hyoon ; Kim, Chulmin ; Chung, Yanghon ; Bang, Sungsig</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c440t-31eda728dbf9cfd7956f8d61989806f6077806b4aebb25b079c4dcdebae59373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>ARIMA Model</topic><topic>Cost Driver</topic><topic>Forecasting</topic><topic>Nuclear Fuel Cycle Cost</topic><topic>Uranium Price</topic><topic>원자력공학</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Sungki</creatorcontrib><creatorcontrib>Ko, Wonil</creatorcontrib><creatorcontrib>Nam, Hyoon</creatorcontrib><creatorcontrib>Kim, Chulmin</creatorcontrib><creatorcontrib>Chung, Yanghon</creatorcontrib><creatorcontrib>Bang, Sungsig</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Directory of Open Access Journals</collection><collection>Korean Citation Index</collection><jtitle>Nuclear engineering and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Sungki</au><au>Ko, Wonil</au><au>Nam, Hyoon</au><au>Kim, Chulmin</au><au>Chung, Yanghon</au><au>Bang, Sungsig</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Statistical model for forecasting uranium prices to estimate the nuclear fuel cycle cost</atitle><jtitle>Nuclear engineering and technology</jtitle><date>2017-08</date><risdate>2017</risdate><volume>49</volume><issue>5</issue><spage>1063</spage><epage>1070</epage><pages>1063-1070</pages><issn>1738-5733</issn><eissn>2234-358X</eissn><abstract>This paper presents a method for forecasting future uranium prices that is used as input data to calculate the uranium cost, which is a rational key cost driver of the nuclear fuel cycle cost. In other words, the statistical autoregressive integrated moving average (ARIMA) model and existing engineering cost estimation method, the so-called escalation rate model, were subjected to a comparative analysis. When the uranium price was forecasted in 2015, the margin of error of the ARIMA model forecasting was calculated and found to be 5.4%, whereas the escalation rate model was found to have a margin of error of 7.32%. Thus, it was verified that the ARIMA model is more suitable than the escalation rate model at decreasing uncertainty in nuclear fuel cycle cost calculation.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.net.2017.05.007</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-2738-8335</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1738-5733
ispartof Nuclear Engineering and Technology, 2017, 49(5), , pp.1063-1070
issn 1738-5733
2234-358X
language eng
recordid cdi_nrf_kci_oai_kci_go_kr_ARTI_1423685
source ScienceDirect Additional Titles
subjects ARIMA Model
Cost Driver
Forecasting
Nuclear Fuel Cycle Cost
Uranium Price
원자력공학
title Statistical model for forecasting uranium prices to estimate the nuclear fuel cycle cost
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T12%3A04%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_nrf_k&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Statistical%20model%20for%20forecasting%20uranium%20prices%20to%20estimate%20the%20nuclear%20fuel%20cycle%20cost&rft.jtitle=Nuclear%20engineering%20and%20technology&rft.au=Kim,%20Sungki&rft.date=2017-08&rft.volume=49&rft.issue=5&rft.spage=1063&rft.epage=1070&rft.pages=1063-1070&rft.issn=1738-5733&rft.eissn=2234-358X&rft_id=info:doi/10.1016/j.net.2017.05.007&rft_dat=%3Celsevier_nrf_k%3ES1738573317300992%3C/elsevier_nrf_k%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c440t-31eda728dbf9cfd7956f8d61989806f6077806b4aebb25b079c4dcdebae59373%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true