Loading…
Indole oxidation enhances electricity production in an E. coli-catalyzed microbial fuel cell
Microbial fuel cells (MFCs) generate electricity from the oxidation of dissolved organic matter. A variety of Gram-positive and Gram-negative bacteria, including Escherichia coli, produce a large quantity of indole, which functions as an extracellular signal molecule. This work explored the role of...
Saved in:
Published in: | Biotechnology and bioprocess engineering 2014, 19(1), , pp.126-131 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Microbial fuel cells (MFCs) generate electricity from the oxidation of dissolved organic matter. A variety of Gram-positive and Gram-negative bacteria, including Escherichia coli, produce a large quantity of indole, which functions as an extracellular signal molecule. This work explored the role of indole in a mediatorless E. coli catalyzed MFC. Although the presence of indole alone did not affect power generation, indole oxidation by the indole-oxidizing enzyme toluene-o-monooxygenase (TOM) enhanced power density by 9-fold. Open circuit voltage and polarization curve showed that indole oxidation by TOM produced a maximum power density of 5.4 mW/m² at 1,000 ohm. Cyclic voltammetric results suggested that indole oxidation resulted in the production of redox compounds. This study provides a novel means of enhancing power generation in E. coli-catalyzed MFCs. |
---|---|
ISSN: | 1226-8372 1976-3816 |
DOI: | 10.1007/s12257-013-0429-7 |