Loading…
Aerodynamic performance optimization for the rotor design of a hovering agricultural unmanned helicopter
The importance of using Agriculture unmanned helicopters (AUHs), especially for spraying pesticides and fertilizers on any terrain type to ensure crop yields, has been recently acknowledged. Apart from flying these helicopters at a super-low altitude and low speed, using an efficient and optimum rot...
Saved in:
Published in: | Journal of mechanical science and technology 2017, 31(9), , pp.4221-4226 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c350t-af8e744780fb381cf8e71563190738a2ad98d2d482fe86409267b7703dbe43023 |
---|---|
cites | cdi_FETCH-LOGICAL-c350t-af8e744780fb381cf8e71563190738a2ad98d2d482fe86409267b7703dbe43023 |
container_end_page | 4226 |
container_issue | 9 |
container_start_page | 4221 |
container_title | Journal of mechanical science and technology |
container_volume | 31 |
creator | Haider, B. A. Sohn, C. H. Won, Y. S. Koo, Y. M. |
description | The importance of using Agriculture unmanned helicopters (AUHs), especially for spraying pesticides and fertilizers on any terrain type to ensure crop yields, has been recently acknowledged. Apart from flying these helicopters at a super-low altitude and low speed, using an efficient and optimum rotor blade ensures a uniform and deep penetration of pesticide and fertilizers over a specified area. Accordingly, this work attempts to optimize the rotor blade of an AUH by using coupling statistics and several numerical techniques, including design of experiments, response surface method, and computational fluid dynamics. The experiments are designed using the central composite design method and by selecting the geometric variables that affect the aerodynamic performance of the rotor blade, including the root chord, tip chord, and angle of attack. The angle at the root and tip is optimized in order for the resulting twist to produce a uniform blade loading, achieve maximum lift, and minimize the required hover power. The required aerodynamic forces and limited availability of engine power are identified as constraints. The blade is optimized only when the helicopter is hovering at a persistent rotational speed, and the hover efficiency of the rotor blade with an optimal twist distribution is significantly higher than the baseline. |
doi_str_mv | 10.1007/s12206-017-0820-y |
format | article |
fullrecord | <record><control><sourceid>proquest_nrf_k</sourceid><recordid>TN_cdi_nrf_kci_oai_kci_go_kr_ARTI_1917943</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2421234009</sourcerecordid><originalsourceid>FETCH-LOGICAL-c350t-af8e744780fb381cf8e71563190738a2ad98d2d482fe86409267b7703dbe43023</originalsourceid><addsrcrecordid>eNp1kEtLAzEUhQdRUKs_wF3AlYvRm0cnmWURH4WCIBXchXQm06aPZLyZEeqvN3UEV67ug3MO935ZdkXhlgLIu0gZgyIHKnNQDPL9UXZGS1nkXDFxnHrJVS5K8X6ance4BiiYoPQsW00shnrvzc5VpLXYBNwZX1kS2s7t3JfpXPAkbUm3sgRDl7raRrf0JDTEkFX4tOj8kpgluqrfdj2aLel9CvG2Jiu7dVWKsniRnTRmG-3lbx1lb48P8_vnfPbyNL2fzPKKj6HLTaOsFEIqaBZc0eow0nHBaQnpA8NMXaqa1UKxxqpCQMkKuZASeL2wggPjo-xmyPXY6E3ldDDupy6D3qCevM6nmpZUloIn7fWgbTF89DZ2eh169Ok8zQSjjAuAMqnooKowxIi20S26ncG9pqAP8PUAXyf4-gBf75OHDZ7YHuhY_Ev-3_QN_pKIQw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2421234009</pqid></control><display><type>article</type><title>Aerodynamic performance optimization for the rotor design of a hovering agricultural unmanned helicopter</title><source>Springer Nature</source><creator>Haider, B. A. ; Sohn, C. H. ; Won, Y. S. ; Koo, Y. M.</creator><creatorcontrib>Haider, B. A. ; Sohn, C. H. ; Won, Y. S. ; Koo, Y. M.</creatorcontrib><description>The importance of using Agriculture unmanned helicopters (AUHs), especially for spraying pesticides and fertilizers on any terrain type to ensure crop yields, has been recently acknowledged. Apart from flying these helicopters at a super-low altitude and low speed, using an efficient and optimum rotor blade ensures a uniform and deep penetration of pesticide and fertilizers over a specified area. Accordingly, this work attempts to optimize the rotor blade of an AUH by using coupling statistics and several numerical techniques, including design of experiments, response surface method, and computational fluid dynamics. The experiments are designed using the central composite design method and by selecting the geometric variables that affect the aerodynamic performance of the rotor blade, including the root chord, tip chord, and angle of attack. The angle at the root and tip is optimized in order for the resulting twist to produce a uniform blade loading, achieve maximum lift, and minimize the required hover power. The required aerodynamic forces and limited availability of engine power are identified as constraints. The blade is optimized only when the helicopter is hovering at a persistent rotational speed, and the hover efficiency of the rotor blade with an optimal twist distribution is significantly higher than the baseline.</description><identifier>ISSN: 1738-494X</identifier><identifier>EISSN: 1976-3824</identifier><identifier>DOI: 10.1007/s12206-017-0820-y</identifier><language>eng</language><publisher>Seoul: Korean Society of Steel Construction</publisher><subject>Aerodynamic forces ; Aerodynamics ; Agricultural aircraft ; Angle of attack ; Computational fluid dynamics ; Control ; Crop yield ; Design of experiments ; Design optimization ; Dynamical Systems ; Engineering ; Fertilizers ; Helicopters ; Hovering ; Industrial and Production Engineering ; Low altitude ; Low speed ; Mechanical Engineering ; Pesticides ; Response surface methodology ; Spraying ; Unmanned helicopters ; Vibration ; 기계공학</subject><ispartof>Journal of Mechanical Science and Technology, 2017, 31(9), , pp.4221-4226</ispartof><rights>The Korean Society of Mechanical Engineers and Springer-Verlag GmbH Germany 2017</rights><rights>The Korean Society of Mechanical Engineers and Springer-Verlag GmbH Germany 2017.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c350t-af8e744780fb381cf8e71563190738a2ad98d2d482fe86409267b7703dbe43023</citedby><cites>FETCH-LOGICAL-c350t-af8e744780fb381cf8e71563190738a2ad98d2d482fe86409267b7703dbe43023</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttps://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002257564$$DAccess content in National Research Foundation of Korea (NRF)$$Hfree_for_read</backlink></links><search><creatorcontrib>Haider, B. A.</creatorcontrib><creatorcontrib>Sohn, C. H.</creatorcontrib><creatorcontrib>Won, Y. S.</creatorcontrib><creatorcontrib>Koo, Y. M.</creatorcontrib><title>Aerodynamic performance optimization for the rotor design of a hovering agricultural unmanned helicopter</title><title>Journal of mechanical science and technology</title><addtitle>J Mech Sci Technol</addtitle><description>The importance of using Agriculture unmanned helicopters (AUHs), especially for spraying pesticides and fertilizers on any terrain type to ensure crop yields, has been recently acknowledged. Apart from flying these helicopters at a super-low altitude and low speed, using an efficient and optimum rotor blade ensures a uniform and deep penetration of pesticide and fertilizers over a specified area. Accordingly, this work attempts to optimize the rotor blade of an AUH by using coupling statistics and several numerical techniques, including design of experiments, response surface method, and computational fluid dynamics. The experiments are designed using the central composite design method and by selecting the geometric variables that affect the aerodynamic performance of the rotor blade, including the root chord, tip chord, and angle of attack. The angle at the root and tip is optimized in order for the resulting twist to produce a uniform blade loading, achieve maximum lift, and minimize the required hover power. The required aerodynamic forces and limited availability of engine power are identified as constraints. The blade is optimized only when the helicopter is hovering at a persistent rotational speed, and the hover efficiency of the rotor blade with an optimal twist distribution is significantly higher than the baseline.</description><subject>Aerodynamic forces</subject><subject>Aerodynamics</subject><subject>Agricultural aircraft</subject><subject>Angle of attack</subject><subject>Computational fluid dynamics</subject><subject>Control</subject><subject>Crop yield</subject><subject>Design of experiments</subject><subject>Design optimization</subject><subject>Dynamical Systems</subject><subject>Engineering</subject><subject>Fertilizers</subject><subject>Helicopters</subject><subject>Hovering</subject><subject>Industrial and Production Engineering</subject><subject>Low altitude</subject><subject>Low speed</subject><subject>Mechanical Engineering</subject><subject>Pesticides</subject><subject>Response surface methodology</subject><subject>Spraying</subject><subject>Unmanned helicopters</subject><subject>Vibration</subject><subject>기계공학</subject><issn>1738-494X</issn><issn>1976-3824</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLAzEUhQdRUKs_wF3AlYvRm0cnmWURH4WCIBXchXQm06aPZLyZEeqvN3UEV67ug3MO935ZdkXhlgLIu0gZgyIHKnNQDPL9UXZGS1nkXDFxnHrJVS5K8X6ance4BiiYoPQsW00shnrvzc5VpLXYBNwZX1kS2s7t3JfpXPAkbUm3sgRDl7raRrf0JDTEkFX4tOj8kpgluqrfdj2aLel9CvG2Jiu7dVWKsniRnTRmG-3lbx1lb48P8_vnfPbyNL2fzPKKj6HLTaOsFEIqaBZc0eow0nHBaQnpA8NMXaqa1UKxxqpCQMkKuZASeL2wggPjo-xmyPXY6E3ldDDupy6D3qCevM6nmpZUloIn7fWgbTF89DZ2eh169Ok8zQSjjAuAMqnooKowxIi20S26ncG9pqAP8PUAXyf4-gBf75OHDZ7YHuhY_Ev-3_QN_pKIQw</recordid><startdate>20170901</startdate><enddate>20170901</enddate><creator>Haider, B. A.</creator><creator>Sohn, C. H.</creator><creator>Won, Y. S.</creator><creator>Koo, Y. M.</creator><general>Korean Society of Steel Construction</general><general>Springer Nature B.V</general><general>대한기계학회</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>S0W</scope><scope>ACYCR</scope></search><sort><creationdate>20170901</creationdate><title>Aerodynamic performance optimization for the rotor design of a hovering agricultural unmanned helicopter</title><author>Haider, B. A. ; Sohn, C. H. ; Won, Y. S. ; Koo, Y. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c350t-af8e744780fb381cf8e71563190738a2ad98d2d482fe86409267b7703dbe43023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Aerodynamic forces</topic><topic>Aerodynamics</topic><topic>Agricultural aircraft</topic><topic>Angle of attack</topic><topic>Computational fluid dynamics</topic><topic>Control</topic><topic>Crop yield</topic><topic>Design of experiments</topic><topic>Design optimization</topic><topic>Dynamical Systems</topic><topic>Engineering</topic><topic>Fertilizers</topic><topic>Helicopters</topic><topic>Hovering</topic><topic>Industrial and Production Engineering</topic><topic>Low altitude</topic><topic>Low speed</topic><topic>Mechanical Engineering</topic><topic>Pesticides</topic><topic>Response surface methodology</topic><topic>Spraying</topic><topic>Unmanned helicopters</topic><topic>Vibration</topic><topic>기계공학</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Haider, B. A.</creatorcontrib><creatorcontrib>Sohn, C. H.</creatorcontrib><creatorcontrib>Won, Y. S.</creatorcontrib><creatorcontrib>Koo, Y. M.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>DELNET Engineering & Technology Collection</collection><collection>Korean Citation Index</collection><jtitle>Journal of mechanical science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Haider, B. A.</au><au>Sohn, C. H.</au><au>Won, Y. S.</au><au>Koo, Y. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Aerodynamic performance optimization for the rotor design of a hovering agricultural unmanned helicopter</atitle><jtitle>Journal of mechanical science and technology</jtitle><stitle>J Mech Sci Technol</stitle><date>2017-09-01</date><risdate>2017</risdate><volume>31</volume><issue>9</issue><spage>4221</spage><epage>4226</epage><pages>4221-4226</pages><issn>1738-494X</issn><eissn>1976-3824</eissn><abstract>The importance of using Agriculture unmanned helicopters (AUHs), especially for spraying pesticides and fertilizers on any terrain type to ensure crop yields, has been recently acknowledged. Apart from flying these helicopters at a super-low altitude and low speed, using an efficient and optimum rotor blade ensures a uniform and deep penetration of pesticide and fertilizers over a specified area. Accordingly, this work attempts to optimize the rotor blade of an AUH by using coupling statistics and several numerical techniques, including design of experiments, response surface method, and computational fluid dynamics. The experiments are designed using the central composite design method and by selecting the geometric variables that affect the aerodynamic performance of the rotor blade, including the root chord, tip chord, and angle of attack. The angle at the root and tip is optimized in order for the resulting twist to produce a uniform blade loading, achieve maximum lift, and minimize the required hover power. The required aerodynamic forces and limited availability of engine power are identified as constraints. The blade is optimized only when the helicopter is hovering at a persistent rotational speed, and the hover efficiency of the rotor blade with an optimal twist distribution is significantly higher than the baseline.</abstract><cop>Seoul</cop><pub>Korean Society of Steel Construction</pub><doi>10.1007/s12206-017-0820-y</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1738-494X |
ispartof | Journal of Mechanical Science and Technology, 2017, 31(9), , pp.4221-4226 |
issn | 1738-494X 1976-3824 |
language | eng |
recordid | cdi_nrf_kci_oai_kci_go_kr_ARTI_1917943 |
source | Springer Nature |
subjects | Aerodynamic forces Aerodynamics Agricultural aircraft Angle of attack Computational fluid dynamics Control Crop yield Design of experiments Design optimization Dynamical Systems Engineering Fertilizers Helicopters Hovering Industrial and Production Engineering Low altitude Low speed Mechanical Engineering Pesticides Response surface methodology Spraying Unmanned helicopters Vibration 기계공학 |
title | Aerodynamic performance optimization for the rotor design of a hovering agricultural unmanned helicopter |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T00%3A43%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_nrf_k&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Aerodynamic%20performance%20optimization%20for%20the%20rotor%20design%20of%20a%20hovering%20agricultural%20unmanned%20helicopter&rft.jtitle=Journal%20of%20mechanical%20science%20and%20technology&rft.au=Haider,%20B.%20A.&rft.date=2017-09-01&rft.volume=31&rft.issue=9&rft.spage=4221&rft.epage=4226&rft.pages=4221-4226&rft.issn=1738-494X&rft.eissn=1976-3824&rft_id=info:doi/10.1007/s12206-017-0820-y&rft_dat=%3Cproquest_nrf_k%3E2421234009%3C/proquest_nrf_k%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c350t-af8e744780fb381cf8e71563190738a2ad98d2d482fe86409267b7703dbe43023%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2421234009&rft_id=info:pmid/&rfr_iscdi=true |