Loading…

Aerodynamic performance optimization for the rotor design of a hovering agricultural unmanned helicopter

The importance of using Agriculture unmanned helicopters (AUHs), especially for spraying pesticides and fertilizers on any terrain type to ensure crop yields, has been recently acknowledged. Apart from flying these helicopters at a super-low altitude and low speed, using an efficient and optimum rot...

Full description

Saved in:
Bibliographic Details
Published in:Journal of mechanical science and technology 2017, 31(9), , pp.4221-4226
Main Authors: Haider, B. A., Sohn, C. H., Won, Y. S., Koo, Y. M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c350t-af8e744780fb381cf8e71563190738a2ad98d2d482fe86409267b7703dbe43023
cites cdi_FETCH-LOGICAL-c350t-af8e744780fb381cf8e71563190738a2ad98d2d482fe86409267b7703dbe43023
container_end_page 4226
container_issue 9
container_start_page 4221
container_title Journal of mechanical science and technology
container_volume 31
creator Haider, B. A.
Sohn, C. H.
Won, Y. S.
Koo, Y. M.
description The importance of using Agriculture unmanned helicopters (AUHs), especially for spraying pesticides and fertilizers on any terrain type to ensure crop yields, has been recently acknowledged. Apart from flying these helicopters at a super-low altitude and low speed, using an efficient and optimum rotor blade ensures a uniform and deep penetration of pesticide and fertilizers over a specified area. Accordingly, this work attempts to optimize the rotor blade of an AUH by using coupling statistics and several numerical techniques, including design of experiments, response surface method, and computational fluid dynamics. The experiments are designed using the central composite design method and by selecting the geometric variables that affect the aerodynamic performance of the rotor blade, including the root chord, tip chord, and angle of attack. The angle at the root and tip is optimized in order for the resulting twist to produce a uniform blade loading, achieve maximum lift, and minimize the required hover power. The required aerodynamic forces and limited availability of engine power are identified as constraints. The blade is optimized only when the helicopter is hovering at a persistent rotational speed, and the hover efficiency of the rotor blade with an optimal twist distribution is significantly higher than the baseline.
doi_str_mv 10.1007/s12206-017-0820-y
format article
fullrecord <record><control><sourceid>proquest_nrf_k</sourceid><recordid>TN_cdi_nrf_kci_oai_kci_go_kr_ARTI_1917943</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2421234009</sourcerecordid><originalsourceid>FETCH-LOGICAL-c350t-af8e744780fb381cf8e71563190738a2ad98d2d482fe86409267b7703dbe43023</originalsourceid><addsrcrecordid>eNp1kEtLAzEUhQdRUKs_wF3AlYvRm0cnmWURH4WCIBXchXQm06aPZLyZEeqvN3UEV67ug3MO935ZdkXhlgLIu0gZgyIHKnNQDPL9UXZGS1nkXDFxnHrJVS5K8X6ance4BiiYoPQsW00shnrvzc5VpLXYBNwZX1kS2s7t3JfpXPAkbUm3sgRDl7raRrf0JDTEkFX4tOj8kpgluqrfdj2aLel9CvG2Jiu7dVWKsniRnTRmG-3lbx1lb48P8_vnfPbyNL2fzPKKj6HLTaOsFEIqaBZc0eow0nHBaQnpA8NMXaqa1UKxxqpCQMkKuZASeL2wggPjo-xmyPXY6E3ldDDupy6D3qCevM6nmpZUloIn7fWgbTF89DZ2eh169Ok8zQSjjAuAMqnooKowxIi20S26ncG9pqAP8PUAXyf4-gBf75OHDZ7YHuhY_Ev-3_QN_pKIQw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2421234009</pqid></control><display><type>article</type><title>Aerodynamic performance optimization for the rotor design of a hovering agricultural unmanned helicopter</title><source>Springer Nature</source><creator>Haider, B. A. ; Sohn, C. H. ; Won, Y. S. ; Koo, Y. M.</creator><creatorcontrib>Haider, B. A. ; Sohn, C. H. ; Won, Y. S. ; Koo, Y. M.</creatorcontrib><description>The importance of using Agriculture unmanned helicopters (AUHs), especially for spraying pesticides and fertilizers on any terrain type to ensure crop yields, has been recently acknowledged. Apart from flying these helicopters at a super-low altitude and low speed, using an efficient and optimum rotor blade ensures a uniform and deep penetration of pesticide and fertilizers over a specified area. Accordingly, this work attempts to optimize the rotor blade of an AUH by using coupling statistics and several numerical techniques, including design of experiments, response surface method, and computational fluid dynamics. The experiments are designed using the central composite design method and by selecting the geometric variables that affect the aerodynamic performance of the rotor blade, including the root chord, tip chord, and angle of attack. The angle at the root and tip is optimized in order for the resulting twist to produce a uniform blade loading, achieve maximum lift, and minimize the required hover power. The required aerodynamic forces and limited availability of engine power are identified as constraints. The blade is optimized only when the helicopter is hovering at a persistent rotational speed, and the hover efficiency of the rotor blade with an optimal twist distribution is significantly higher than the baseline.</description><identifier>ISSN: 1738-494X</identifier><identifier>EISSN: 1976-3824</identifier><identifier>DOI: 10.1007/s12206-017-0820-y</identifier><language>eng</language><publisher>Seoul: Korean Society of Steel Construction</publisher><subject>Aerodynamic forces ; Aerodynamics ; Agricultural aircraft ; Angle of attack ; Computational fluid dynamics ; Control ; Crop yield ; Design of experiments ; Design optimization ; Dynamical Systems ; Engineering ; Fertilizers ; Helicopters ; Hovering ; Industrial and Production Engineering ; Low altitude ; Low speed ; Mechanical Engineering ; Pesticides ; Response surface methodology ; Spraying ; Unmanned helicopters ; Vibration ; 기계공학</subject><ispartof>Journal of Mechanical Science and Technology, 2017, 31(9), , pp.4221-4226</ispartof><rights>The Korean Society of Mechanical Engineers and Springer-Verlag GmbH Germany 2017</rights><rights>The Korean Society of Mechanical Engineers and Springer-Verlag GmbH Germany 2017.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c350t-af8e744780fb381cf8e71563190738a2ad98d2d482fe86409267b7703dbe43023</citedby><cites>FETCH-LOGICAL-c350t-af8e744780fb381cf8e71563190738a2ad98d2d482fe86409267b7703dbe43023</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttps://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002257564$$DAccess content in National Research Foundation of Korea (NRF)$$Hfree_for_read</backlink></links><search><creatorcontrib>Haider, B. A.</creatorcontrib><creatorcontrib>Sohn, C. H.</creatorcontrib><creatorcontrib>Won, Y. S.</creatorcontrib><creatorcontrib>Koo, Y. M.</creatorcontrib><title>Aerodynamic performance optimization for the rotor design of a hovering agricultural unmanned helicopter</title><title>Journal of mechanical science and technology</title><addtitle>J Mech Sci Technol</addtitle><description>The importance of using Agriculture unmanned helicopters (AUHs), especially for spraying pesticides and fertilizers on any terrain type to ensure crop yields, has been recently acknowledged. Apart from flying these helicopters at a super-low altitude and low speed, using an efficient and optimum rotor blade ensures a uniform and deep penetration of pesticide and fertilizers over a specified area. Accordingly, this work attempts to optimize the rotor blade of an AUH by using coupling statistics and several numerical techniques, including design of experiments, response surface method, and computational fluid dynamics. The experiments are designed using the central composite design method and by selecting the geometric variables that affect the aerodynamic performance of the rotor blade, including the root chord, tip chord, and angle of attack. The angle at the root and tip is optimized in order for the resulting twist to produce a uniform blade loading, achieve maximum lift, and minimize the required hover power. The required aerodynamic forces and limited availability of engine power are identified as constraints. The blade is optimized only when the helicopter is hovering at a persistent rotational speed, and the hover efficiency of the rotor blade with an optimal twist distribution is significantly higher than the baseline.</description><subject>Aerodynamic forces</subject><subject>Aerodynamics</subject><subject>Agricultural aircraft</subject><subject>Angle of attack</subject><subject>Computational fluid dynamics</subject><subject>Control</subject><subject>Crop yield</subject><subject>Design of experiments</subject><subject>Design optimization</subject><subject>Dynamical Systems</subject><subject>Engineering</subject><subject>Fertilizers</subject><subject>Helicopters</subject><subject>Hovering</subject><subject>Industrial and Production Engineering</subject><subject>Low altitude</subject><subject>Low speed</subject><subject>Mechanical Engineering</subject><subject>Pesticides</subject><subject>Response surface methodology</subject><subject>Spraying</subject><subject>Unmanned helicopters</subject><subject>Vibration</subject><subject>기계공학</subject><issn>1738-494X</issn><issn>1976-3824</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLAzEUhQdRUKs_wF3AlYvRm0cnmWURH4WCIBXchXQm06aPZLyZEeqvN3UEV67ug3MO935ZdkXhlgLIu0gZgyIHKnNQDPL9UXZGS1nkXDFxnHrJVS5K8X6ance4BiiYoPQsW00shnrvzc5VpLXYBNwZX1kS2s7t3JfpXPAkbUm3sgRDl7raRrf0JDTEkFX4tOj8kpgluqrfdj2aLel9CvG2Jiu7dVWKsniRnTRmG-3lbx1lb48P8_vnfPbyNL2fzPKKj6HLTaOsFEIqaBZc0eow0nHBaQnpA8NMXaqa1UKxxqpCQMkKuZASeL2wggPjo-xmyPXY6E3ldDDupy6D3qCevM6nmpZUloIn7fWgbTF89DZ2eh169Ok8zQSjjAuAMqnooKowxIi20S26ncG9pqAP8PUAXyf4-gBf75OHDZ7YHuhY_Ev-3_QN_pKIQw</recordid><startdate>20170901</startdate><enddate>20170901</enddate><creator>Haider, B. A.</creator><creator>Sohn, C. H.</creator><creator>Won, Y. S.</creator><creator>Koo, Y. M.</creator><general>Korean Society of Steel Construction</general><general>Springer Nature B.V</general><general>대한기계학회</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>S0W</scope><scope>ACYCR</scope></search><sort><creationdate>20170901</creationdate><title>Aerodynamic performance optimization for the rotor design of a hovering agricultural unmanned helicopter</title><author>Haider, B. A. ; Sohn, C. H. ; Won, Y. S. ; Koo, Y. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c350t-af8e744780fb381cf8e71563190738a2ad98d2d482fe86409267b7703dbe43023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Aerodynamic forces</topic><topic>Aerodynamics</topic><topic>Agricultural aircraft</topic><topic>Angle of attack</topic><topic>Computational fluid dynamics</topic><topic>Control</topic><topic>Crop yield</topic><topic>Design of experiments</topic><topic>Design optimization</topic><topic>Dynamical Systems</topic><topic>Engineering</topic><topic>Fertilizers</topic><topic>Helicopters</topic><topic>Hovering</topic><topic>Industrial and Production Engineering</topic><topic>Low altitude</topic><topic>Low speed</topic><topic>Mechanical Engineering</topic><topic>Pesticides</topic><topic>Response surface methodology</topic><topic>Spraying</topic><topic>Unmanned helicopters</topic><topic>Vibration</topic><topic>기계공학</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Haider, B. A.</creatorcontrib><creatorcontrib>Sohn, C. H.</creatorcontrib><creatorcontrib>Won, Y. S.</creatorcontrib><creatorcontrib>Koo, Y. M.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>DELNET Engineering &amp; Technology Collection</collection><collection>Korean Citation Index</collection><jtitle>Journal of mechanical science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Haider, B. A.</au><au>Sohn, C. H.</au><au>Won, Y. S.</au><au>Koo, Y. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Aerodynamic performance optimization for the rotor design of a hovering agricultural unmanned helicopter</atitle><jtitle>Journal of mechanical science and technology</jtitle><stitle>J Mech Sci Technol</stitle><date>2017-09-01</date><risdate>2017</risdate><volume>31</volume><issue>9</issue><spage>4221</spage><epage>4226</epage><pages>4221-4226</pages><issn>1738-494X</issn><eissn>1976-3824</eissn><abstract>The importance of using Agriculture unmanned helicopters (AUHs), especially for spraying pesticides and fertilizers on any terrain type to ensure crop yields, has been recently acknowledged. Apart from flying these helicopters at a super-low altitude and low speed, using an efficient and optimum rotor blade ensures a uniform and deep penetration of pesticide and fertilizers over a specified area. Accordingly, this work attempts to optimize the rotor blade of an AUH by using coupling statistics and several numerical techniques, including design of experiments, response surface method, and computational fluid dynamics. The experiments are designed using the central composite design method and by selecting the geometric variables that affect the aerodynamic performance of the rotor blade, including the root chord, tip chord, and angle of attack. The angle at the root and tip is optimized in order for the resulting twist to produce a uniform blade loading, achieve maximum lift, and minimize the required hover power. The required aerodynamic forces and limited availability of engine power are identified as constraints. The blade is optimized only when the helicopter is hovering at a persistent rotational speed, and the hover efficiency of the rotor blade with an optimal twist distribution is significantly higher than the baseline.</abstract><cop>Seoul</cop><pub>Korean Society of Steel Construction</pub><doi>10.1007/s12206-017-0820-y</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1738-494X
ispartof Journal of Mechanical Science and Technology, 2017, 31(9), , pp.4221-4226
issn 1738-494X
1976-3824
language eng
recordid cdi_nrf_kci_oai_kci_go_kr_ARTI_1917943
source Springer Nature
subjects Aerodynamic forces
Aerodynamics
Agricultural aircraft
Angle of attack
Computational fluid dynamics
Control
Crop yield
Design of experiments
Design optimization
Dynamical Systems
Engineering
Fertilizers
Helicopters
Hovering
Industrial and Production Engineering
Low altitude
Low speed
Mechanical Engineering
Pesticides
Response surface methodology
Spraying
Unmanned helicopters
Vibration
기계공학
title Aerodynamic performance optimization for the rotor design of a hovering agricultural unmanned helicopter
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T00%3A43%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_nrf_k&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Aerodynamic%20performance%20optimization%20for%20the%20rotor%20design%20of%20a%20hovering%20agricultural%20unmanned%20helicopter&rft.jtitle=Journal%20of%20mechanical%20science%20and%20technology&rft.au=Haider,%20B.%20A.&rft.date=2017-09-01&rft.volume=31&rft.issue=9&rft.spage=4221&rft.epage=4226&rft.pages=4221-4226&rft.issn=1738-494X&rft.eissn=1976-3824&rft_id=info:doi/10.1007/s12206-017-0820-y&rft_dat=%3Cproquest_nrf_k%3E2421234009%3C/proquest_nrf_k%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c350t-af8e744780fb381cf8e71563190738a2ad98d2d482fe86409267b7703dbe43023%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2421234009&rft_id=info:pmid/&rfr_iscdi=true