Loading…
A vehicular positioning with GPS/IMU using adaptive control of filter noise covariance
Vehicular positioning with GPS/IMU has been studied a lot to increase positioning accuracy. The positioning algorithms mainly use DR (Dead Reckoning) which uses EKF (Extended Kalman Filter). It is basic and very important core technology in positioning section. However, EKF has a major drawback in t...
Saved in:
Published in: | ICT express 2016, 2(1), , pp.41-46 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c391t-268ea9558d79c45320f31281afe3f1cef037413d1273f22feec8da171ae8cbf93 |
---|---|
cites | cdi_FETCH-LOGICAL-c391t-268ea9558d79c45320f31281afe3f1cef037413d1273f22feec8da171ae8cbf93 |
container_end_page | 46 |
container_issue | 1 |
container_start_page | 41 |
container_title | ICT express |
container_volume | 2 |
creator | Kim, Juwon Lee, Sangsun |
description | Vehicular positioning with GPS/IMU has been studied a lot to increase positioning accuracy. The positioning algorithms mainly use DR (Dead Reckoning) which uses EKF (Extended Kalman Filter). It is basic and very important core technology in positioning section. However, EKF has a major drawback in that it is impossible to make very accurate system and measurement models for a real environment. In this work, we propose an algorithm to estimate vehicle’s position as distribution form, and to control the system and measurement noise covariance to compensate for this major disadvantage. The proposed method to control noise covariance is independently processed, using fading factor and sensor error while considering the driving condition. |
doi_str_mv | 10.1016/j.icte.2016.03.001 |
format | article |
fullrecord | <record><control><sourceid>nrf_doaj_</sourceid><recordid>TN_cdi_nrf_kci_oai_kci_go_kr_ARTI_2121892</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_9dbfa34bd5ee4cd497f924b197a2bade</doaj_id><sourcerecordid>oai_kci_go_kr_ARTI_2121892</sourcerecordid><originalsourceid>FETCH-LOGICAL-c391t-268ea9558d79c45320f31281afe3f1cef037413d1273f22feec8da171ae8cbf93</originalsourceid><addsrcrecordid>eNpNkc1OwzAQhCMEEhXwApx85dDUayckPlYVlEogEH9Xa2Ovi9sQV05axNuTtAhxmtFo9jvsJMkl8BQ4XE9WqTcdpaL3KZcp53CUjETG87HKVX78z58mF2274n1DCQBVjJL3KdvRhzfbGiPbhNZ3PjS-WbIv332w-dPLZPHwxrbtEKHFTed3xExouhhqFhxzvu4osib4dsh3GD02hs6TE4d1Sxe_epa83d68zu7G94_zxWx6PzZSQTcW1yWhyvPSFspkuRTcSRAloCPpwJDjsshAWhCFdEI4IlNahAKQSlM5Jc-SqwO3iU6vjdcB_V6XQa-jnj6_LrQAAaUSfXdx6NqAK72J_hPj9_5gH4S41Bg7b2rSylYOZVbZnCgzNlOFUyKr-o-hqNBSzxIHlomhbSO5Px5wPYyiV3oYRQ-jaC51_3L5A8EIgU4</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A vehicular positioning with GPS/IMU using adaptive control of filter noise covariance</title><source>ScienceDirect Journals</source><creator>Kim, Juwon ; Lee, Sangsun</creator><creatorcontrib>Kim, Juwon ; Lee, Sangsun</creatorcontrib><description>Vehicular positioning with GPS/IMU has been studied a lot to increase positioning accuracy. The positioning algorithms mainly use DR (Dead Reckoning) which uses EKF (Extended Kalman Filter). It is basic and very important core technology in positioning section. However, EKF has a major drawback in that it is impossible to make very accurate system and measurement models for a real environment. In this work, we propose an algorithm to estimate vehicle’s position as distribution form, and to control the system and measurement noise covariance to compensate for this major disadvantage. The proposed method to control noise covariance is independently processed, using fading factor and sensor error while considering the driving condition.</description><identifier>ISSN: 2405-9595</identifier><identifier>EISSN: 2405-9595</identifier><identifier>DOI: 10.1016/j.icte.2016.03.001</identifier><language>eng</language><publisher>Elsevier</publisher><subject>Extended Kalman Filter ; GPS ; IMU ; System/measurement noise covariance ; Vehicular positioning ; 전자/정보통신공학</subject><ispartof>ICT Express , 2016, 2(1), , pp.41-46</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c391t-268ea9558d79c45320f31281afe3f1cef037413d1273f22feec8da171ae8cbf93</citedby><cites>FETCH-LOGICAL-c391t-268ea9558d79c45320f31281afe3f1cef037413d1273f22feec8da171ae8cbf93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002284206$$DAccess content in National Research Foundation of Korea (NRF)$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Juwon</creatorcontrib><creatorcontrib>Lee, Sangsun</creatorcontrib><title>A vehicular positioning with GPS/IMU using adaptive control of filter noise covariance</title><title>ICT express</title><description>Vehicular positioning with GPS/IMU has been studied a lot to increase positioning accuracy. The positioning algorithms mainly use DR (Dead Reckoning) which uses EKF (Extended Kalman Filter). It is basic and very important core technology in positioning section. However, EKF has a major drawback in that it is impossible to make very accurate system and measurement models for a real environment. In this work, we propose an algorithm to estimate vehicle’s position as distribution form, and to control the system and measurement noise covariance to compensate for this major disadvantage. The proposed method to control noise covariance is independently processed, using fading factor and sensor error while considering the driving condition.</description><subject>Extended Kalman Filter</subject><subject>GPS</subject><subject>IMU</subject><subject>System/measurement noise covariance</subject><subject>Vehicular positioning</subject><subject>전자/정보통신공학</subject><issn>2405-9595</issn><issn>2405-9595</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpNkc1OwzAQhCMEEhXwApx85dDUayckPlYVlEogEH9Xa2Ovi9sQV05axNuTtAhxmtFo9jvsJMkl8BQ4XE9WqTcdpaL3KZcp53CUjETG87HKVX78z58mF2274n1DCQBVjJL3KdvRhzfbGiPbhNZ3PjS-WbIv332w-dPLZPHwxrbtEKHFTed3xExouhhqFhxzvu4osib4dsh3GD02hs6TE4d1Sxe_epa83d68zu7G94_zxWx6PzZSQTcW1yWhyvPSFspkuRTcSRAloCPpwJDjsshAWhCFdEI4IlNahAKQSlM5Jc-SqwO3iU6vjdcB_V6XQa-jnj6_LrQAAaUSfXdx6NqAK72J_hPj9_5gH4S41Bg7b2rSylYOZVbZnCgzNlOFUyKr-o-hqNBSzxIHlomhbSO5Px5wPYyiV3oYRQ-jaC51_3L5A8EIgU4</recordid><startdate>201603</startdate><enddate>201603</enddate><creator>Kim, Juwon</creator><creator>Lee, Sangsun</creator><general>Elsevier</general><general>한국통신학회</general><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><scope>ACYCR</scope></search><sort><creationdate>201603</creationdate><title>A vehicular positioning with GPS/IMU using adaptive control of filter noise covariance</title><author>Kim, Juwon ; Lee, Sangsun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c391t-268ea9558d79c45320f31281afe3f1cef037413d1273f22feec8da171ae8cbf93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Extended Kalman Filter</topic><topic>GPS</topic><topic>IMU</topic><topic>System/measurement noise covariance</topic><topic>Vehicular positioning</topic><topic>전자/정보통신공학</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Juwon</creatorcontrib><creatorcontrib>Lee, Sangsun</creatorcontrib><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><collection>Korean Citation Index</collection><jtitle>ICT express</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Juwon</au><au>Lee, Sangsun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A vehicular positioning with GPS/IMU using adaptive control of filter noise covariance</atitle><jtitle>ICT express</jtitle><date>2016-03</date><risdate>2016</risdate><volume>2</volume><issue>1</issue><spage>41</spage><epage>46</epage><pages>41-46</pages><issn>2405-9595</issn><eissn>2405-9595</eissn><abstract>Vehicular positioning with GPS/IMU has been studied a lot to increase positioning accuracy. The positioning algorithms mainly use DR (Dead Reckoning) which uses EKF (Extended Kalman Filter). It is basic and very important core technology in positioning section. However, EKF has a major drawback in that it is impossible to make very accurate system and measurement models for a real environment. In this work, we propose an algorithm to estimate vehicle’s position as distribution form, and to control the system and measurement noise covariance to compensate for this major disadvantage. The proposed method to control noise covariance is independently processed, using fading factor and sensor error while considering the driving condition.</abstract><pub>Elsevier</pub><doi>10.1016/j.icte.2016.03.001</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2405-9595 |
ispartof | ICT Express , 2016, 2(1), , pp.41-46 |
issn | 2405-9595 2405-9595 |
language | eng |
recordid | cdi_nrf_kci_oai_kci_go_kr_ARTI_2121892 |
source | ScienceDirect Journals |
subjects | Extended Kalman Filter GPS IMU System/measurement noise covariance Vehicular positioning 전자/정보통신공학 |
title | A vehicular positioning with GPS/IMU using adaptive control of filter noise covariance |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T15%3A44%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-nrf_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20vehicular%20positioning%20with%20GPS/IMU%20using%20adaptive%20control%20of%20filter%20noise%20covariance&rft.jtitle=ICT%20express&rft.au=Kim,%20Juwon&rft.date=2016-03&rft.volume=2&rft.issue=1&rft.spage=41&rft.epage=46&rft.pages=41-46&rft.issn=2405-9595&rft.eissn=2405-9595&rft_id=info:doi/10.1016/j.icte.2016.03.001&rft_dat=%3Cnrf_doaj_%3Eoai_kci_go_kr_ARTI_2121892%3C/nrf_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c391t-268ea9558d79c45320f31281afe3f1cef037413d1273f22feec8da171ae8cbf93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |