Loading…

A vehicular positioning with GPS/IMU using adaptive control of filter noise covariance

Vehicular positioning with GPS/IMU has been studied a lot to increase positioning accuracy. The positioning algorithms mainly use DR (Dead Reckoning) which uses EKF (Extended Kalman Filter). It is basic and very important core technology in positioning section. However, EKF has a major drawback in t...

Full description

Saved in:
Bibliographic Details
Published in:ICT express 2016, 2(1), , pp.41-46
Main Authors: Kim, Juwon, Lee, Sangsun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c391t-268ea9558d79c45320f31281afe3f1cef037413d1273f22feec8da171ae8cbf93
cites cdi_FETCH-LOGICAL-c391t-268ea9558d79c45320f31281afe3f1cef037413d1273f22feec8da171ae8cbf93
container_end_page 46
container_issue 1
container_start_page 41
container_title ICT express
container_volume 2
creator Kim, Juwon
Lee, Sangsun
description Vehicular positioning with GPS/IMU has been studied a lot to increase positioning accuracy. The positioning algorithms mainly use DR (Dead Reckoning) which uses EKF (Extended Kalman Filter). It is basic and very important core technology in positioning section. However, EKF has a major drawback in that it is impossible to make very accurate system and measurement models for a real environment. In this work, we propose an algorithm to estimate vehicle’s position as distribution form, and to control the system and measurement noise covariance to compensate for this major disadvantage. The proposed method to control noise covariance is independently processed, using fading factor and sensor error while considering the driving condition.
doi_str_mv 10.1016/j.icte.2016.03.001
format article
fullrecord <record><control><sourceid>nrf_doaj_</sourceid><recordid>TN_cdi_nrf_kci_oai_kci_go_kr_ARTI_2121892</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_9dbfa34bd5ee4cd497f924b197a2bade</doaj_id><sourcerecordid>oai_kci_go_kr_ARTI_2121892</sourcerecordid><originalsourceid>FETCH-LOGICAL-c391t-268ea9558d79c45320f31281afe3f1cef037413d1273f22feec8da171ae8cbf93</originalsourceid><addsrcrecordid>eNpNkc1OwzAQhCMEEhXwApx85dDUayckPlYVlEogEH9Xa2Ovi9sQV05axNuTtAhxmtFo9jvsJMkl8BQ4XE9WqTcdpaL3KZcp53CUjETG87HKVX78z58mF2274n1DCQBVjJL3KdvRhzfbGiPbhNZ3PjS-WbIv332w-dPLZPHwxrbtEKHFTed3xExouhhqFhxzvu4osib4dsh3GD02hs6TE4d1Sxe_epa83d68zu7G94_zxWx6PzZSQTcW1yWhyvPSFspkuRTcSRAloCPpwJDjsshAWhCFdEI4IlNahAKQSlM5Jc-SqwO3iU6vjdcB_V6XQa-jnj6_LrQAAaUSfXdx6NqAK72J_hPj9_5gH4S41Bg7b2rSylYOZVbZnCgzNlOFUyKr-o-hqNBSzxIHlomhbSO5Px5wPYyiV3oYRQ-jaC51_3L5A8EIgU4</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A vehicular positioning with GPS/IMU using adaptive control of filter noise covariance</title><source>ScienceDirect Journals</source><creator>Kim, Juwon ; Lee, Sangsun</creator><creatorcontrib>Kim, Juwon ; Lee, Sangsun</creatorcontrib><description>Vehicular positioning with GPS/IMU has been studied a lot to increase positioning accuracy. The positioning algorithms mainly use DR (Dead Reckoning) which uses EKF (Extended Kalman Filter). It is basic and very important core technology in positioning section. However, EKF has a major drawback in that it is impossible to make very accurate system and measurement models for a real environment. In this work, we propose an algorithm to estimate vehicle’s position as distribution form, and to control the system and measurement noise covariance to compensate for this major disadvantage. The proposed method to control noise covariance is independently processed, using fading factor and sensor error while considering the driving condition.</description><identifier>ISSN: 2405-9595</identifier><identifier>EISSN: 2405-9595</identifier><identifier>DOI: 10.1016/j.icte.2016.03.001</identifier><language>eng</language><publisher>Elsevier</publisher><subject>Extended Kalman Filter ; GPS ; IMU ; System/measurement noise covariance ; Vehicular positioning ; 전자/정보통신공학</subject><ispartof>ICT Express , 2016, 2(1), , pp.41-46</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c391t-268ea9558d79c45320f31281afe3f1cef037413d1273f22feec8da171ae8cbf93</citedby><cites>FETCH-LOGICAL-c391t-268ea9558d79c45320f31281afe3f1cef037413d1273f22feec8da171ae8cbf93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002284206$$DAccess content in National Research Foundation of Korea (NRF)$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Juwon</creatorcontrib><creatorcontrib>Lee, Sangsun</creatorcontrib><title>A vehicular positioning with GPS/IMU using adaptive control of filter noise covariance</title><title>ICT express</title><description>Vehicular positioning with GPS/IMU has been studied a lot to increase positioning accuracy. The positioning algorithms mainly use DR (Dead Reckoning) which uses EKF (Extended Kalman Filter). It is basic and very important core technology in positioning section. However, EKF has a major drawback in that it is impossible to make very accurate system and measurement models for a real environment. In this work, we propose an algorithm to estimate vehicle’s position as distribution form, and to control the system and measurement noise covariance to compensate for this major disadvantage. The proposed method to control noise covariance is independently processed, using fading factor and sensor error while considering the driving condition.</description><subject>Extended Kalman Filter</subject><subject>GPS</subject><subject>IMU</subject><subject>System/measurement noise covariance</subject><subject>Vehicular positioning</subject><subject>전자/정보통신공학</subject><issn>2405-9595</issn><issn>2405-9595</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpNkc1OwzAQhCMEEhXwApx85dDUayckPlYVlEogEH9Xa2Ovi9sQV05axNuTtAhxmtFo9jvsJMkl8BQ4XE9WqTcdpaL3KZcp53CUjETG87HKVX78z58mF2274n1DCQBVjJL3KdvRhzfbGiPbhNZ3PjS-WbIv332w-dPLZPHwxrbtEKHFTed3xExouhhqFhxzvu4osib4dsh3GD02hs6TE4d1Sxe_epa83d68zu7G94_zxWx6PzZSQTcW1yWhyvPSFspkuRTcSRAloCPpwJDjsshAWhCFdEI4IlNahAKQSlM5Jc-SqwO3iU6vjdcB_V6XQa-jnj6_LrQAAaUSfXdx6NqAK72J_hPj9_5gH4S41Bg7b2rSylYOZVbZnCgzNlOFUyKr-o-hqNBSzxIHlomhbSO5Px5wPYyiV3oYRQ-jaC51_3L5A8EIgU4</recordid><startdate>201603</startdate><enddate>201603</enddate><creator>Kim, Juwon</creator><creator>Lee, Sangsun</creator><general>Elsevier</general><general>한국통신학회</general><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><scope>ACYCR</scope></search><sort><creationdate>201603</creationdate><title>A vehicular positioning with GPS/IMU using adaptive control of filter noise covariance</title><author>Kim, Juwon ; Lee, Sangsun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c391t-268ea9558d79c45320f31281afe3f1cef037413d1273f22feec8da171ae8cbf93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Extended Kalman Filter</topic><topic>GPS</topic><topic>IMU</topic><topic>System/measurement noise covariance</topic><topic>Vehicular positioning</topic><topic>전자/정보통신공학</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Juwon</creatorcontrib><creatorcontrib>Lee, Sangsun</creatorcontrib><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><collection>Korean Citation Index</collection><jtitle>ICT express</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Juwon</au><au>Lee, Sangsun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A vehicular positioning with GPS/IMU using adaptive control of filter noise covariance</atitle><jtitle>ICT express</jtitle><date>2016-03</date><risdate>2016</risdate><volume>2</volume><issue>1</issue><spage>41</spage><epage>46</epage><pages>41-46</pages><issn>2405-9595</issn><eissn>2405-9595</eissn><abstract>Vehicular positioning with GPS/IMU has been studied a lot to increase positioning accuracy. The positioning algorithms mainly use DR (Dead Reckoning) which uses EKF (Extended Kalman Filter). It is basic and very important core technology in positioning section. However, EKF has a major drawback in that it is impossible to make very accurate system and measurement models for a real environment. In this work, we propose an algorithm to estimate vehicle’s position as distribution form, and to control the system and measurement noise covariance to compensate for this major disadvantage. The proposed method to control noise covariance is independently processed, using fading factor and sensor error while considering the driving condition.</abstract><pub>Elsevier</pub><doi>10.1016/j.icte.2016.03.001</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2405-9595
ispartof ICT Express , 2016, 2(1), , pp.41-46
issn 2405-9595
2405-9595
language eng
recordid cdi_nrf_kci_oai_kci_go_kr_ARTI_2121892
source ScienceDirect Journals
subjects Extended Kalman Filter
GPS
IMU
System/measurement noise covariance
Vehicular positioning
전자/정보통신공학
title A vehicular positioning with GPS/IMU using adaptive control of filter noise covariance
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T15%3A44%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-nrf_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20vehicular%20positioning%20with%20GPS/IMU%20using%20adaptive%20control%20of%20filter%20noise%20covariance&rft.jtitle=ICT%20express&rft.au=Kim,%20Juwon&rft.date=2016-03&rft.volume=2&rft.issue=1&rft.spage=41&rft.epage=46&rft.pages=41-46&rft.issn=2405-9595&rft.eissn=2405-9595&rft_id=info:doi/10.1016/j.icte.2016.03.001&rft_dat=%3Cnrf_doaj_%3Eoai_kci_go_kr_ARTI_2121892%3C/nrf_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c391t-268ea9558d79c45320f31281afe3f1cef037413d1273f22feec8da171ae8cbf93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true