Loading…

Radial basis function neural network based adaptive fast nonsingular terminal sliding mode controller for piezo positioning stage

This paper presents an adaptive fast nonsingular terminal sliding mode control base on a neural network based approximation technique to control the position of a piezo positioning stage (PSS). The proposed terminal sliding mode control can provide faster convergence and higher precision control whi...

Full description

Saved in:
Bibliographic Details
Published in:International journal of control, automation, and systems 2017, Automation, and Systems, 15(6), , pp.2892-2905
Main Authors: Dinh, To Xuan, Ahn, Kyoung Kwan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c350t-2698ff550f7a2685f72b87d9f6e5bcc80efa78b82fd34f583ea052fc2d73c4763
cites cdi_FETCH-LOGICAL-c350t-2698ff550f7a2685f72b87d9f6e5bcc80efa78b82fd34f583ea052fc2d73c4763
container_end_page 2905
container_issue 6
container_start_page 2892
container_title International journal of control, automation, and systems
container_volume 15
creator Dinh, To Xuan
Ahn, Kyoung Kwan
description This paper presents an adaptive fast nonsingular terminal sliding mode control base on a neural network based approximation technique to control the position of a piezo positioning stage (PSS). The proposed terminal sliding mode control can provide faster convergence and higher precision control while maintain its robustness to uncertainties. In the proposed control scheme, the combination of the fast-nonsingular terminal sliding mode control and neural network, which can precisely estimate the uncertainties in dynamic of the PSS system by employing an online tuning scheme, is a promising control approach for actuator systems. In addition, the robust control term is adopted to compensate the modeling error and ensure the robustness corresponding to a bounded disturbance. Stability of the closed loop system is analyzed and proved by using special Lyapunov functions. Experiment results strongly confirm the effectiveness of the proposed control method.
doi_str_mv 10.1007/s12555-016-0650-1
format article
fullrecord <record><control><sourceid>proquest_nrf_k</sourceid><recordid>TN_cdi_nrf_kci_oai_kci_go_kr_ARTI_2148169</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1975522650</sourcerecordid><originalsourceid>FETCH-LOGICAL-c350t-2698ff550f7a2685f72b87d9f6e5bcc80efa78b82fd34f583ea052fc2d73c4763</originalsourceid><addsrcrecordid>eNp1kU1LxDAQhoMouK7-AG8BTx6qSdp89CjiFwiC6Dlk02SJ201qkip685-bWg9ePA2887wzzLwAHGN0hhHi5wkTSmmFMKsQo6jCO2BBEKJVg1qyCxaYtqJiTcP2wUFKLwgxRlq-AF-PqnOqhyuVXIJ29Dq74KE3YyyqN_k9xM3UNR1UnRqyezPQqpShDz45vx57FWE2cet8MaTedUWE29AZqIPPMfS9idCGCAdnPgMcQnLTiolKWa3NIdizqk_m6LcuwfP11dPlbXX_cHN3eXFf6ZqiXBHWCmspRZYrwgS1nKwE71rLDF1pLZCxiouVILarG0tFbRSixGrS8Vo3nNVLcDrP9dHKjXYyKPdT10Fuorx4fLqTBDcCs7awJzM7xPA6mpTlSxhjOTBJ3HJKCSk_LhSeKR1DStFYOUS3VfFDYiSnVOSciiypyCkViYuHzJ5UWL828c_kf03fhIKSEA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1975522650</pqid></control><display><type>article</type><title>Radial basis function neural network based adaptive fast nonsingular terminal sliding mode controller for piezo positioning stage</title><source>ABI/INFORM Global</source><source>Springer Link</source><creator>Dinh, To Xuan ; Ahn, Kyoung Kwan</creator><creatorcontrib>Dinh, To Xuan ; Ahn, Kyoung Kwan</creatorcontrib><description>This paper presents an adaptive fast nonsingular terminal sliding mode control base on a neural network based approximation technique to control the position of a piezo positioning stage (PSS). The proposed terminal sliding mode control can provide faster convergence and higher precision control while maintain its robustness to uncertainties. In the proposed control scheme, the combination of the fast-nonsingular terminal sliding mode control and neural network, which can precisely estimate the uncertainties in dynamic of the PSS system by employing an online tuning scheme, is a promising control approach for actuator systems. In addition, the robust control term is adopted to compensate the modeling error and ensure the robustness corresponding to a bounded disturbance. Stability of the closed loop system is analyzed and proved by using special Lyapunov functions. Experiment results strongly confirm the effectiveness of the proposed control method.</description><identifier>ISSN: 1598-6446</identifier><identifier>EISSN: 2005-4092</identifier><identifier>DOI: 10.1007/s12555-016-0650-1</identifier><language>eng</language><publisher>Bucheon / Seoul: Institute of Control, Robotics and Systems and The Korean Institute of Electrical Engineers</publisher><subject>Adaptive control ; Basis functions ; Control ; Controllers ; Engineering ; Intelligent Control and Applications ; Liapunov functions ; Mechatronics ; Neural networks ; On-line systems ; Radial basis function ; Robotics ; Robust control ; Sliding mode control ; Stability analysis ; Uncertainty ; 제어계측공학</subject><ispartof>International Journal of Control, 2017, Automation, and Systems, 15(6), , pp.2892-2905</ispartof><rights>Institute of Control, Robotics and Systems and The Korean Institute of Electrical Engineers and Springer-Verlag GmbH Germany 2017</rights><rights>Copyright Springer Science &amp; Business Media Dec 2017</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c350t-2698ff550f7a2685f72b87d9f6e5bcc80efa78b82fd34f583ea052fc2d73c4763</citedby><cites>FETCH-LOGICAL-c350t-2698ff550f7a2685f72b87d9f6e5bcc80efa78b82fd34f583ea052fc2d73c4763</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/1975522650?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,11667,27901,27902,36037,44339</link.rule.ids><backlink>$$Uhttps://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002290000$$DAccess content in National Research Foundation of Korea (NRF)$$Hfree_for_read</backlink></links><search><creatorcontrib>Dinh, To Xuan</creatorcontrib><creatorcontrib>Ahn, Kyoung Kwan</creatorcontrib><title>Radial basis function neural network based adaptive fast nonsingular terminal sliding mode controller for piezo positioning stage</title><title>International journal of control, automation, and systems</title><addtitle>Int. J. Control Autom. Syst</addtitle><description>This paper presents an adaptive fast nonsingular terminal sliding mode control base on a neural network based approximation technique to control the position of a piezo positioning stage (PSS). The proposed terminal sliding mode control can provide faster convergence and higher precision control while maintain its robustness to uncertainties. In the proposed control scheme, the combination of the fast-nonsingular terminal sliding mode control and neural network, which can precisely estimate the uncertainties in dynamic of the PSS system by employing an online tuning scheme, is a promising control approach for actuator systems. In addition, the robust control term is adopted to compensate the modeling error and ensure the robustness corresponding to a bounded disturbance. Stability of the closed loop system is analyzed and proved by using special Lyapunov functions. Experiment results strongly confirm the effectiveness of the proposed control method.</description><subject>Adaptive control</subject><subject>Basis functions</subject><subject>Control</subject><subject>Controllers</subject><subject>Engineering</subject><subject>Intelligent Control and Applications</subject><subject>Liapunov functions</subject><subject>Mechatronics</subject><subject>Neural networks</subject><subject>On-line systems</subject><subject>Radial basis function</subject><subject>Robotics</subject><subject>Robust control</subject><subject>Sliding mode control</subject><subject>Stability analysis</subject><subject>Uncertainty</subject><subject>제어계측공학</subject><issn>1598-6446</issn><issn>2005-4092</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp1kU1LxDAQhoMouK7-AG8BTx6qSdp89CjiFwiC6Dlk02SJ201qkip685-bWg9ePA2887wzzLwAHGN0hhHi5wkTSmmFMKsQo6jCO2BBEKJVg1qyCxaYtqJiTcP2wUFKLwgxRlq-AF-PqnOqhyuVXIJ29Dq74KE3YyyqN_k9xM3UNR1UnRqyezPQqpShDz45vx57FWE2cet8MaTedUWE29AZqIPPMfS9idCGCAdnPgMcQnLTiolKWa3NIdizqk_m6LcuwfP11dPlbXX_cHN3eXFf6ZqiXBHWCmspRZYrwgS1nKwE71rLDF1pLZCxiouVILarG0tFbRSixGrS8Vo3nNVLcDrP9dHKjXYyKPdT10Fuorx4fLqTBDcCs7awJzM7xPA6mpTlSxhjOTBJ3HJKCSk_LhSeKR1DStFYOUS3VfFDYiSnVOSciiypyCkViYuHzJ5UWL828c_kf03fhIKSEA</recordid><startdate>20171201</startdate><enddate>20171201</enddate><creator>Dinh, To Xuan</creator><creator>Ahn, Kyoung Kwan</creator><general>Institute of Control, Robotics and Systems and The Korean Institute of Electrical Engineers</general><general>Springer Nature B.V</general><general>제어·로봇·시스템학회</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>ACYCR</scope></search><sort><creationdate>20171201</creationdate><title>Radial basis function neural network based adaptive fast nonsingular terminal sliding mode controller for piezo positioning stage</title><author>Dinh, To Xuan ; Ahn, Kyoung Kwan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c350t-2698ff550f7a2685f72b87d9f6e5bcc80efa78b82fd34f583ea052fc2d73c4763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Adaptive control</topic><topic>Basis functions</topic><topic>Control</topic><topic>Controllers</topic><topic>Engineering</topic><topic>Intelligent Control and Applications</topic><topic>Liapunov functions</topic><topic>Mechatronics</topic><topic>Neural networks</topic><topic>On-line systems</topic><topic>Radial basis function</topic><topic>Robotics</topic><topic>Robust control</topic><topic>Sliding mode control</topic><topic>Stability analysis</topic><topic>Uncertainty</topic><topic>제어계측공학</topic><toplevel>online_resources</toplevel><creatorcontrib>Dinh, To Xuan</creatorcontrib><creatorcontrib>Ahn, Kyoung Kwan</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Korean Citation Index</collection><jtitle>International journal of control, automation, and systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dinh, To Xuan</au><au>Ahn, Kyoung Kwan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Radial basis function neural network based adaptive fast nonsingular terminal sliding mode controller for piezo positioning stage</atitle><jtitle>International journal of control, automation, and systems</jtitle><stitle>Int. J. Control Autom. Syst</stitle><date>2017-12-01</date><risdate>2017</risdate><volume>15</volume><issue>6</issue><spage>2892</spage><epage>2905</epage><pages>2892-2905</pages><issn>1598-6446</issn><eissn>2005-4092</eissn><abstract>This paper presents an adaptive fast nonsingular terminal sliding mode control base on a neural network based approximation technique to control the position of a piezo positioning stage (PSS). The proposed terminal sliding mode control can provide faster convergence and higher precision control while maintain its robustness to uncertainties. In the proposed control scheme, the combination of the fast-nonsingular terminal sliding mode control and neural network, which can precisely estimate the uncertainties in dynamic of the PSS system by employing an online tuning scheme, is a promising control approach for actuator systems. In addition, the robust control term is adopted to compensate the modeling error and ensure the robustness corresponding to a bounded disturbance. Stability of the closed loop system is analyzed and proved by using special Lyapunov functions. Experiment results strongly confirm the effectiveness of the proposed control method.</abstract><cop>Bucheon / Seoul</cop><pub>Institute of Control, Robotics and Systems and The Korean Institute of Electrical Engineers</pub><doi>10.1007/s12555-016-0650-1</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1598-6446
ispartof International Journal of Control, 2017, Automation, and Systems, 15(6), , pp.2892-2905
issn 1598-6446
2005-4092
language eng
recordid cdi_nrf_kci_oai_kci_go_kr_ARTI_2148169
source ABI/INFORM Global; Springer Link
subjects Adaptive control
Basis functions
Control
Controllers
Engineering
Intelligent Control and Applications
Liapunov functions
Mechatronics
Neural networks
On-line systems
Radial basis function
Robotics
Robust control
Sliding mode control
Stability analysis
Uncertainty
제어계측공학
title Radial basis function neural network based adaptive fast nonsingular terminal sliding mode controller for piezo positioning stage
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T07%3A16%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_nrf_k&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Radial%20basis%20function%20neural%20network%20based%20adaptive%20fast%20nonsingular%20terminal%20sliding%20mode%20controller%20for%20piezo%20positioning%20stage&rft.jtitle=International%20journal%20of%20control,%20automation,%20and%20systems&rft.au=Dinh,%20To%20Xuan&rft.date=2017-12-01&rft.volume=15&rft.issue=6&rft.spage=2892&rft.epage=2905&rft.pages=2892-2905&rft.issn=1598-6446&rft.eissn=2005-4092&rft_id=info:doi/10.1007/s12555-016-0650-1&rft_dat=%3Cproquest_nrf_k%3E1975522650%3C/proquest_nrf_k%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c350t-2698ff550f7a2685f72b87d9f6e5bcc80efa78b82fd34f583ea052fc2d73c4763%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1975522650&rft_id=info:pmid/&rfr_iscdi=true