Loading…
Radial basis function neural network based adaptive fast nonsingular terminal sliding mode controller for piezo positioning stage
This paper presents an adaptive fast nonsingular terminal sliding mode control base on a neural network based approximation technique to control the position of a piezo positioning stage (PSS). The proposed terminal sliding mode control can provide faster convergence and higher precision control whi...
Saved in:
Published in: | International journal of control, automation, and systems 2017, Automation, and Systems, 15(6), , pp.2892-2905 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c350t-2698ff550f7a2685f72b87d9f6e5bcc80efa78b82fd34f583ea052fc2d73c4763 |
---|---|
cites | cdi_FETCH-LOGICAL-c350t-2698ff550f7a2685f72b87d9f6e5bcc80efa78b82fd34f583ea052fc2d73c4763 |
container_end_page | 2905 |
container_issue | 6 |
container_start_page | 2892 |
container_title | International journal of control, automation, and systems |
container_volume | 15 |
creator | Dinh, To Xuan Ahn, Kyoung Kwan |
description | This paper presents an adaptive fast nonsingular terminal sliding mode control base on a neural network based approximation technique to control the position of a piezo positioning stage (PSS). The proposed terminal sliding mode control can provide faster convergence and higher precision control while maintain its robustness to uncertainties. In the proposed control scheme, the combination of the fast-nonsingular terminal sliding mode control and neural network, which can precisely estimate the uncertainties in dynamic of the PSS system by employing an online tuning scheme, is a promising control approach for actuator systems. In addition, the robust control term is adopted to compensate the modeling error and ensure the robustness corresponding to a bounded disturbance. Stability of the closed loop system is analyzed and proved by using special Lyapunov functions. Experiment results strongly confirm the effectiveness of the proposed control method. |
doi_str_mv | 10.1007/s12555-016-0650-1 |
format | article |
fullrecord | <record><control><sourceid>proquest_nrf_k</sourceid><recordid>TN_cdi_nrf_kci_oai_kci_go_kr_ARTI_2148169</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1975522650</sourcerecordid><originalsourceid>FETCH-LOGICAL-c350t-2698ff550f7a2685f72b87d9f6e5bcc80efa78b82fd34f583ea052fc2d73c4763</originalsourceid><addsrcrecordid>eNp1kU1LxDAQhoMouK7-AG8BTx6qSdp89CjiFwiC6Dlk02SJ201qkip685-bWg9ePA2887wzzLwAHGN0hhHi5wkTSmmFMKsQo6jCO2BBEKJVg1qyCxaYtqJiTcP2wUFKLwgxRlq-AF-PqnOqhyuVXIJ29Dq74KE3YyyqN_k9xM3UNR1UnRqyezPQqpShDz45vx57FWE2cet8MaTedUWE29AZqIPPMfS9idCGCAdnPgMcQnLTiolKWa3NIdizqk_m6LcuwfP11dPlbXX_cHN3eXFf6ZqiXBHWCmspRZYrwgS1nKwE71rLDF1pLZCxiouVILarG0tFbRSixGrS8Vo3nNVLcDrP9dHKjXYyKPdT10Fuorx4fLqTBDcCs7awJzM7xPA6mpTlSxhjOTBJ3HJKCSk_LhSeKR1DStFYOUS3VfFDYiSnVOSciiypyCkViYuHzJ5UWL828c_kf03fhIKSEA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1975522650</pqid></control><display><type>article</type><title>Radial basis function neural network based adaptive fast nonsingular terminal sliding mode controller for piezo positioning stage</title><source>ABI/INFORM Global</source><source>Springer Link</source><creator>Dinh, To Xuan ; Ahn, Kyoung Kwan</creator><creatorcontrib>Dinh, To Xuan ; Ahn, Kyoung Kwan</creatorcontrib><description>This paper presents an adaptive fast nonsingular terminal sliding mode control base on a neural network based approximation technique to control the position of a piezo positioning stage (PSS). The proposed terminal sliding mode control can provide faster convergence and higher precision control while maintain its robustness to uncertainties. In the proposed control scheme, the combination of the fast-nonsingular terminal sliding mode control and neural network, which can precisely estimate the uncertainties in dynamic of the PSS system by employing an online tuning scheme, is a promising control approach for actuator systems. In addition, the robust control term is adopted to compensate the modeling error and ensure the robustness corresponding to a bounded disturbance. Stability of the closed loop system is analyzed and proved by using special Lyapunov functions. Experiment results strongly confirm the effectiveness of the proposed control method.</description><identifier>ISSN: 1598-6446</identifier><identifier>EISSN: 2005-4092</identifier><identifier>DOI: 10.1007/s12555-016-0650-1</identifier><language>eng</language><publisher>Bucheon / Seoul: Institute of Control, Robotics and Systems and The Korean Institute of Electrical Engineers</publisher><subject>Adaptive control ; Basis functions ; Control ; Controllers ; Engineering ; Intelligent Control and Applications ; Liapunov functions ; Mechatronics ; Neural networks ; On-line systems ; Radial basis function ; Robotics ; Robust control ; Sliding mode control ; Stability analysis ; Uncertainty ; 제어계측공학</subject><ispartof>International Journal of Control, 2017, Automation, and Systems, 15(6), , pp.2892-2905</ispartof><rights>Institute of Control, Robotics and Systems and The Korean Institute of Electrical Engineers and Springer-Verlag GmbH Germany 2017</rights><rights>Copyright Springer Science & Business Media Dec 2017</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c350t-2698ff550f7a2685f72b87d9f6e5bcc80efa78b82fd34f583ea052fc2d73c4763</citedby><cites>FETCH-LOGICAL-c350t-2698ff550f7a2685f72b87d9f6e5bcc80efa78b82fd34f583ea052fc2d73c4763</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/1975522650?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,11667,27901,27902,36037,44339</link.rule.ids><backlink>$$Uhttps://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002290000$$DAccess content in National Research Foundation of Korea (NRF)$$Hfree_for_read</backlink></links><search><creatorcontrib>Dinh, To Xuan</creatorcontrib><creatorcontrib>Ahn, Kyoung Kwan</creatorcontrib><title>Radial basis function neural network based adaptive fast nonsingular terminal sliding mode controller for piezo positioning stage</title><title>International journal of control, automation, and systems</title><addtitle>Int. J. Control Autom. Syst</addtitle><description>This paper presents an adaptive fast nonsingular terminal sliding mode control base on a neural network based approximation technique to control the position of a piezo positioning stage (PSS). The proposed terminal sliding mode control can provide faster convergence and higher precision control while maintain its robustness to uncertainties. In the proposed control scheme, the combination of the fast-nonsingular terminal sliding mode control and neural network, which can precisely estimate the uncertainties in dynamic of the PSS system by employing an online tuning scheme, is a promising control approach for actuator systems. In addition, the robust control term is adopted to compensate the modeling error and ensure the robustness corresponding to a bounded disturbance. Stability of the closed loop system is analyzed and proved by using special Lyapunov functions. Experiment results strongly confirm the effectiveness of the proposed control method.</description><subject>Adaptive control</subject><subject>Basis functions</subject><subject>Control</subject><subject>Controllers</subject><subject>Engineering</subject><subject>Intelligent Control and Applications</subject><subject>Liapunov functions</subject><subject>Mechatronics</subject><subject>Neural networks</subject><subject>On-line systems</subject><subject>Radial basis function</subject><subject>Robotics</subject><subject>Robust control</subject><subject>Sliding mode control</subject><subject>Stability analysis</subject><subject>Uncertainty</subject><subject>제어계측공학</subject><issn>1598-6446</issn><issn>2005-4092</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp1kU1LxDAQhoMouK7-AG8BTx6qSdp89CjiFwiC6Dlk02SJ201qkip685-bWg9ePA2887wzzLwAHGN0hhHi5wkTSmmFMKsQo6jCO2BBEKJVg1qyCxaYtqJiTcP2wUFKLwgxRlq-AF-PqnOqhyuVXIJ29Dq74KE3YyyqN_k9xM3UNR1UnRqyezPQqpShDz45vx57FWE2cet8MaTedUWE29AZqIPPMfS9idCGCAdnPgMcQnLTiolKWa3NIdizqk_m6LcuwfP11dPlbXX_cHN3eXFf6ZqiXBHWCmspRZYrwgS1nKwE71rLDF1pLZCxiouVILarG0tFbRSixGrS8Vo3nNVLcDrP9dHKjXYyKPdT10Fuorx4fLqTBDcCs7awJzM7xPA6mpTlSxhjOTBJ3HJKCSk_LhSeKR1DStFYOUS3VfFDYiSnVOSciiypyCkViYuHzJ5UWL828c_kf03fhIKSEA</recordid><startdate>20171201</startdate><enddate>20171201</enddate><creator>Dinh, To Xuan</creator><creator>Ahn, Kyoung Kwan</creator><general>Institute of Control, Robotics and Systems and The Korean Institute of Electrical Engineers</general><general>Springer Nature B.V</general><general>제어·로봇·시스템학회</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>ACYCR</scope></search><sort><creationdate>20171201</creationdate><title>Radial basis function neural network based adaptive fast nonsingular terminal sliding mode controller for piezo positioning stage</title><author>Dinh, To Xuan ; Ahn, Kyoung Kwan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c350t-2698ff550f7a2685f72b87d9f6e5bcc80efa78b82fd34f583ea052fc2d73c4763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Adaptive control</topic><topic>Basis functions</topic><topic>Control</topic><topic>Controllers</topic><topic>Engineering</topic><topic>Intelligent Control and Applications</topic><topic>Liapunov functions</topic><topic>Mechatronics</topic><topic>Neural networks</topic><topic>On-line systems</topic><topic>Radial basis function</topic><topic>Robotics</topic><topic>Robust control</topic><topic>Sliding mode control</topic><topic>Stability analysis</topic><topic>Uncertainty</topic><topic>제어계측공학</topic><toplevel>online_resources</toplevel><creatorcontrib>Dinh, To Xuan</creatorcontrib><creatorcontrib>Ahn, Kyoung Kwan</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Korean Citation Index</collection><jtitle>International journal of control, automation, and systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dinh, To Xuan</au><au>Ahn, Kyoung Kwan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Radial basis function neural network based adaptive fast nonsingular terminal sliding mode controller for piezo positioning stage</atitle><jtitle>International journal of control, automation, and systems</jtitle><stitle>Int. J. Control Autom. Syst</stitle><date>2017-12-01</date><risdate>2017</risdate><volume>15</volume><issue>6</issue><spage>2892</spage><epage>2905</epage><pages>2892-2905</pages><issn>1598-6446</issn><eissn>2005-4092</eissn><abstract>This paper presents an adaptive fast nonsingular terminal sliding mode control base on a neural network based approximation technique to control the position of a piezo positioning stage (PSS). The proposed terminal sliding mode control can provide faster convergence and higher precision control while maintain its robustness to uncertainties. In the proposed control scheme, the combination of the fast-nonsingular terminal sliding mode control and neural network, which can precisely estimate the uncertainties in dynamic of the PSS system by employing an online tuning scheme, is a promising control approach for actuator systems. In addition, the robust control term is adopted to compensate the modeling error and ensure the robustness corresponding to a bounded disturbance. Stability of the closed loop system is analyzed and proved by using special Lyapunov functions. Experiment results strongly confirm the effectiveness of the proposed control method.</abstract><cop>Bucheon / Seoul</cop><pub>Institute of Control, Robotics and Systems and The Korean Institute of Electrical Engineers</pub><doi>10.1007/s12555-016-0650-1</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1598-6446 |
ispartof | International Journal of Control, 2017, Automation, and Systems, 15(6), , pp.2892-2905 |
issn | 1598-6446 2005-4092 |
language | eng |
recordid | cdi_nrf_kci_oai_kci_go_kr_ARTI_2148169 |
source | ABI/INFORM Global; Springer Link |
subjects | Adaptive control Basis functions Control Controllers Engineering Intelligent Control and Applications Liapunov functions Mechatronics Neural networks On-line systems Radial basis function Robotics Robust control Sliding mode control Stability analysis Uncertainty 제어계측공학 |
title | Radial basis function neural network based adaptive fast nonsingular terminal sliding mode controller for piezo positioning stage |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T07%3A16%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_nrf_k&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Radial%20basis%20function%20neural%20network%20based%20adaptive%20fast%20nonsingular%20terminal%20sliding%20mode%20controller%20for%20piezo%20positioning%20stage&rft.jtitle=International%20journal%20of%20control,%20automation,%20and%20systems&rft.au=Dinh,%20To%20Xuan&rft.date=2017-12-01&rft.volume=15&rft.issue=6&rft.spage=2892&rft.epage=2905&rft.pages=2892-2905&rft.issn=1598-6446&rft.eissn=2005-4092&rft_id=info:doi/10.1007/s12555-016-0650-1&rft_dat=%3Cproquest_nrf_k%3E1975522650%3C/proquest_nrf_k%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c350t-2698ff550f7a2685f72b87d9f6e5bcc80efa78b82fd34f583ea052fc2d73c4763%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1975522650&rft_id=info:pmid/&rfr_iscdi=true |