Loading…
Robust unscented Kalman filter for nanosat attitude estimation
A robust unscented Kalman filter based on a multiplicative quaternion-error approach is proposed for nanosat estimation in the presence of measurement faults. The global attitude parameterization is given by a quaternion, while the local attitude error is defined using a generalized three-dimensiona...
Saved in:
Published in: | International journal of control, automation, and systems 2017, Automation, and Systems, 15(5), , pp.2161-2173 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A robust unscented Kalman filter based on a multiplicative quaternion-error approach is proposed for nanosat estimation in the presence of measurement faults. The global attitude parameterization is given by a quaternion, while the local attitude error is defined using a generalized three-dimensional attitude representation. The proposed algorithm uses a statistical function including measurement residuals to detect measurement faults and then uses an adaptation scheme based on multiple measurement scale factor for filter robustness against faulty measurements. The proposed algorithm is demonstrated for the attitude estimation of a nanosat with an on-board three-axis magnetometer and rate-integrating gyros in the presence of measurement faults as well as satellite orbit errors. To compare the estimation performance of the proposed algorithm, the robust unscented Kalman filter with single measurement noise scale factor, the standard extended Kalman filter and the unscented Kalman filter are also implemented under the same simulation conditions. |
---|---|
ISSN: | 1598-6446 2005-4092 |
DOI: | 10.1007/s12555-016-0498-4 |