Loading…

Interacting multiple model estimation-based adaptive robust unscented Kalman filter

The unscented Kalman filter (UKF) is a promising approach for the state estimation of nonlinear dynamic systems due to its simple calculation process and superior performance in highly nonlinear systems. However, its solution will be degraded or even divergent when the system model involves uncertai...

Full description

Saved in:
Bibliographic Details
Published in:International journal of control, automation, and systems 2017, Automation, and Systems, 15(5), , pp.2013-2025
Main Authors: Gao, Bingbing, Gao, Shesheng, Zhong, Yongmin, Hu, Gaoge, Gu, Chengfan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c350t-6dfcff8682a1c1e7d18df39c5376e300e9f1bf9c13e855d967944b22a362da623
cites cdi_FETCH-LOGICAL-c350t-6dfcff8682a1c1e7d18df39c5376e300e9f1bf9c13e855d967944b22a362da623
container_end_page 2025
container_issue 5
container_start_page 2013
container_title International journal of control, automation, and systems
container_volume 15
creator Gao, Bingbing
Gao, Shesheng
Zhong, Yongmin
Hu, Gaoge
Gu, Chengfan
description The unscented Kalman filter (UKF) is a promising approach for the state estimation of nonlinear dynamic systems due to its simple calculation process and superior performance in highly nonlinear systems. However, its solution will be degraded or even divergent when the system model involves uncertainty. This paper presents an interacting multiple model (IMM) estimation-based adaptive robust UKF to address this problem. This method combines the merits of the adaptive fading UKF and robust UKF and discards their demerits to inhibit the disturbance of system model uncertainty on the filtering solution. An adaptive fading UKF for the case of process model uncertainty and a robust UKF for the case of measurement model uncertainty are established based on the principle of innovation orthogonality. Subsequently, an IMM estimation is developed to fuse the adaptive fading UKF and robust UKF as sub-filters according to the mode probability. The system state estimation is achieved as a probabilistic weighted sum of the estimation results from the two sub-filters. Simulations, experiments and comparison analysis validate the efficacy of the proposed method.
doi_str_mv 10.1007/s12555-016-0589-2
format article
fullrecord <record><control><sourceid>proquest_nrf_k</sourceid><recordid>TN_cdi_nrf_kci_oai_kci_go_kr_ARTI_2381982</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1949566692</sourcerecordid><originalsourceid>FETCH-LOGICAL-c350t-6dfcff8682a1c1e7d18df39c5376e300e9f1bf9c13e855d967944b22a362da623</originalsourceid><addsrcrecordid>eNp1kDtPwzAUhS0EEqXwA9giMTEY_IideKwqHhVISFBmy_GjSps4wXaQ-PckhIGF6SzfObr3A-ASoxuMUHEbMWGMQYQ5RKwUkByBBUGIwRwJcgwWmIkS8jznp-Asxj1CnBNRLMDbxicblE6132Xt0KS6b2zWdsY2mY2pblWqOw8rFa3JlFF9qj9tFrpqiCkbfNR27JvsSTWt8pmrm3HtHJw41UR78ZtL8H5_t10_wueXh8169Qw1ZShBbpx2ruQlUVhjWxhcGkeFZrTgliJkhcOVExpTWzJmBC9EnleEKMqJUZzQJbied31w8qBr2an6J3edPAS5et1uJKElFuXEXs1sH7qPYfxM7rsh-PE8iUUuGOdcTBSeKR26GIN1sg-jgvAlMZKTZzl7lqNnOXmWU4fMnTiyfmfDn-V_S9__iYBd</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1949566692</pqid></control><display><type>article</type><title>Interacting multiple model estimation-based adaptive robust unscented Kalman filter</title><source>ABI/INFORM global</source><source>Springer Nature</source><creator>Gao, Bingbing ; Gao, Shesheng ; Zhong, Yongmin ; Hu, Gaoge ; Gu, Chengfan</creator><creatorcontrib>Gao, Bingbing ; Gao, Shesheng ; Zhong, Yongmin ; Hu, Gaoge ; Gu, Chengfan</creatorcontrib><description>The unscented Kalman filter (UKF) is a promising approach for the state estimation of nonlinear dynamic systems due to its simple calculation process and superior performance in highly nonlinear systems. However, its solution will be degraded or even divergent when the system model involves uncertainty. This paper presents an interacting multiple model (IMM) estimation-based adaptive robust UKF to address this problem. This method combines the merits of the adaptive fading UKF and robust UKF and discards their demerits to inhibit the disturbance of system model uncertainty on the filtering solution. An adaptive fading UKF for the case of process model uncertainty and a robust UKF for the case of measurement model uncertainty are established based on the principle of innovation orthogonality. Subsequently, an IMM estimation is developed to fuse the adaptive fading UKF and robust UKF as sub-filters according to the mode probability. The system state estimation is achieved as a probabilistic weighted sum of the estimation results from the two sub-filters. Simulations, experiments and comparison analysis validate the efficacy of the proposed method.</description><identifier>ISSN: 1598-6446</identifier><identifier>EISSN: 2005-4092</identifier><identifier>DOI: 10.1007/s12555-016-0589-2</identifier><language>eng</language><publisher>Bucheon / Seoul: Institute of Control, Robotics and Systems and The Korean Institute of Electrical Engineers</publisher><subject>Adaptive filters ; Adaptive systems ; Computer simulation ; Control ; Dynamical systems ; Engineering ; Fading ; Innovations ; Kalman filters ; Mechatronics ; Nonlinear systems ; Orthogonality ; Regular Papers ; Robotics ; Robustness ; State estimation ; Statistical analysis ; Uncertainty ; 제어계측공학</subject><ispartof>International Journal of Control, 2017, Automation, and Systems, 15(5), , pp.2013-2025</ispartof><rights>Institute of Control, Robotics and Systems and The Korean Institute of Electrical Engineers and Springer-Verlag GmbH Germany 2017</rights><rights>International Journal of Control, Automation and Systems is a copyright of Springer, 2017.</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c350t-6dfcff8682a1c1e7d18df39c5376e300e9f1bf9c13e855d967944b22a362da623</citedby><cites>FETCH-LOGICAL-c350t-6dfcff8682a1c1e7d18df39c5376e300e9f1bf9c13e855d967944b22a362da623</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/1949566692?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11688,27924,27925,36060,44363</link.rule.ids><backlink>$$Uhttps://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002270952$$DAccess content in National Research Foundation of Korea (NRF)$$Hfree_for_read</backlink></links><search><creatorcontrib>Gao, Bingbing</creatorcontrib><creatorcontrib>Gao, Shesheng</creatorcontrib><creatorcontrib>Zhong, Yongmin</creatorcontrib><creatorcontrib>Hu, Gaoge</creatorcontrib><creatorcontrib>Gu, Chengfan</creatorcontrib><title>Interacting multiple model estimation-based adaptive robust unscented Kalman filter</title><title>International journal of control, automation, and systems</title><addtitle>Int. J. Control Autom. Syst</addtitle><description>The unscented Kalman filter (UKF) is a promising approach for the state estimation of nonlinear dynamic systems due to its simple calculation process and superior performance in highly nonlinear systems. However, its solution will be degraded or even divergent when the system model involves uncertainty. This paper presents an interacting multiple model (IMM) estimation-based adaptive robust UKF to address this problem. This method combines the merits of the adaptive fading UKF and robust UKF and discards their demerits to inhibit the disturbance of system model uncertainty on the filtering solution. An adaptive fading UKF for the case of process model uncertainty and a robust UKF for the case of measurement model uncertainty are established based on the principle of innovation orthogonality. Subsequently, an IMM estimation is developed to fuse the adaptive fading UKF and robust UKF as sub-filters according to the mode probability. The system state estimation is achieved as a probabilistic weighted sum of the estimation results from the two sub-filters. Simulations, experiments and comparison analysis validate the efficacy of the proposed method.</description><subject>Adaptive filters</subject><subject>Adaptive systems</subject><subject>Computer simulation</subject><subject>Control</subject><subject>Dynamical systems</subject><subject>Engineering</subject><subject>Fading</subject><subject>Innovations</subject><subject>Kalman filters</subject><subject>Mechatronics</subject><subject>Nonlinear systems</subject><subject>Orthogonality</subject><subject>Regular Papers</subject><subject>Robotics</subject><subject>Robustness</subject><subject>State estimation</subject><subject>Statistical analysis</subject><subject>Uncertainty</subject><subject>제어계측공학</subject><issn>1598-6446</issn><issn>2005-4092</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp1kDtPwzAUhS0EEqXwA9giMTEY_IideKwqHhVISFBmy_GjSps4wXaQ-PckhIGF6SzfObr3A-ASoxuMUHEbMWGMQYQ5RKwUkByBBUGIwRwJcgwWmIkS8jznp-Asxj1CnBNRLMDbxicblE6132Xt0KS6b2zWdsY2mY2pblWqOw8rFa3JlFF9qj9tFrpqiCkbfNR27JvsSTWt8pmrm3HtHJw41UR78ZtL8H5_t10_wueXh8169Qw1ZShBbpx2ruQlUVhjWxhcGkeFZrTgliJkhcOVExpTWzJmBC9EnleEKMqJUZzQJbied31w8qBr2an6J3edPAS5et1uJKElFuXEXs1sH7qPYfxM7rsh-PE8iUUuGOdcTBSeKR26GIN1sg-jgvAlMZKTZzl7lqNnOXmWU4fMnTiyfmfDn-V_S9__iYBd</recordid><startdate>20171001</startdate><enddate>20171001</enddate><creator>Gao, Bingbing</creator><creator>Gao, Shesheng</creator><creator>Zhong, Yongmin</creator><creator>Hu, Gaoge</creator><creator>Gu, Chengfan</creator><general>Institute of Control, Robotics and Systems and The Korean Institute of Electrical Engineers</general><general>Springer Nature B.V</general><general>제어·로봇·시스템학회</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>ACYCR</scope></search><sort><creationdate>20171001</creationdate><title>Interacting multiple model estimation-based adaptive robust unscented Kalman filter</title><author>Gao, Bingbing ; Gao, Shesheng ; Zhong, Yongmin ; Hu, Gaoge ; Gu, Chengfan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c350t-6dfcff8682a1c1e7d18df39c5376e300e9f1bf9c13e855d967944b22a362da623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Adaptive filters</topic><topic>Adaptive systems</topic><topic>Computer simulation</topic><topic>Control</topic><topic>Dynamical systems</topic><topic>Engineering</topic><topic>Fading</topic><topic>Innovations</topic><topic>Kalman filters</topic><topic>Mechatronics</topic><topic>Nonlinear systems</topic><topic>Orthogonality</topic><topic>Regular Papers</topic><topic>Robotics</topic><topic>Robustness</topic><topic>State estimation</topic><topic>Statistical analysis</topic><topic>Uncertainty</topic><topic>제어계측공학</topic><toplevel>online_resources</toplevel><creatorcontrib>Gao, Bingbing</creatorcontrib><creatorcontrib>Gao, Shesheng</creatorcontrib><creatorcontrib>Zhong, Yongmin</creatorcontrib><creatorcontrib>Hu, Gaoge</creatorcontrib><creatorcontrib>Gu, Chengfan</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer science database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM global</collection><collection>Computing Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Korean Citation Index</collection><jtitle>International journal of control, automation, and systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gao, Bingbing</au><au>Gao, Shesheng</au><au>Zhong, Yongmin</au><au>Hu, Gaoge</au><au>Gu, Chengfan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interacting multiple model estimation-based adaptive robust unscented Kalman filter</atitle><jtitle>International journal of control, automation, and systems</jtitle><stitle>Int. J. Control Autom. Syst</stitle><date>2017-10-01</date><risdate>2017</risdate><volume>15</volume><issue>5</issue><spage>2013</spage><epage>2025</epage><pages>2013-2025</pages><issn>1598-6446</issn><eissn>2005-4092</eissn><abstract>The unscented Kalman filter (UKF) is a promising approach for the state estimation of nonlinear dynamic systems due to its simple calculation process and superior performance in highly nonlinear systems. However, its solution will be degraded or even divergent when the system model involves uncertainty. This paper presents an interacting multiple model (IMM) estimation-based adaptive robust UKF to address this problem. This method combines the merits of the adaptive fading UKF and robust UKF and discards their demerits to inhibit the disturbance of system model uncertainty on the filtering solution. An adaptive fading UKF for the case of process model uncertainty and a robust UKF for the case of measurement model uncertainty are established based on the principle of innovation orthogonality. Subsequently, an IMM estimation is developed to fuse the adaptive fading UKF and robust UKF as sub-filters according to the mode probability. The system state estimation is achieved as a probabilistic weighted sum of the estimation results from the two sub-filters. Simulations, experiments and comparison analysis validate the efficacy of the proposed method.</abstract><cop>Bucheon / Seoul</cop><pub>Institute of Control, Robotics and Systems and The Korean Institute of Electrical Engineers</pub><doi>10.1007/s12555-016-0589-2</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1598-6446
ispartof International Journal of Control, 2017, Automation, and Systems, 15(5), , pp.2013-2025
issn 1598-6446
2005-4092
language eng
recordid cdi_nrf_kci_oai_kci_go_kr_ARTI_2381982
source ABI/INFORM global; Springer Nature
subjects Adaptive filters
Adaptive systems
Computer simulation
Control
Dynamical systems
Engineering
Fading
Innovations
Kalman filters
Mechatronics
Nonlinear systems
Orthogonality
Regular Papers
Robotics
Robustness
State estimation
Statistical analysis
Uncertainty
제어계측공학
title Interacting multiple model estimation-based adaptive robust unscented Kalman filter
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T09%3A05%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_nrf_k&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interacting%20multiple%20model%20estimation-based%20adaptive%20robust%20unscented%20Kalman%20filter&rft.jtitle=International%20journal%20of%20control,%20automation,%20and%20systems&rft.au=Gao,%20Bingbing&rft.date=2017-10-01&rft.volume=15&rft.issue=5&rft.spage=2013&rft.epage=2025&rft.pages=2013-2025&rft.issn=1598-6446&rft.eissn=2005-4092&rft_id=info:doi/10.1007/s12555-016-0589-2&rft_dat=%3Cproquest_nrf_k%3E1949566692%3C/proquest_nrf_k%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c350t-6dfcff8682a1c1e7d18df39c5376e300e9f1bf9c13e855d967944b22a362da623%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1949566692&rft_id=info:pmid/&rfr_iscdi=true