Loading…

Mechanical and tribological behavior of the metal matrix composite AA6061/ZrO2/C

This study investigates the influence of zirconium dioxide (ZrO 2 ) and graphite (C) on the mechanical and tribological behavior of aluminum-based metal matrix composite (AA6061) fabricated through the stir casting. Metal matrix composites (MMC) are prepared with the following weight percentages: 10...

Full description

Saved in:
Bibliographic Details
Published in:Journal of mechanical science and technology 2017, 31(10), , pp.4711-4717
Main Authors: Pandiyarajan, R., Maran, P., Marimuthu, S., Ganesh, K. C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c350t-5fdfecab1ade8f0868bd9cca5141ee41f3b9446555b82d693fb761e57a345d2d3
cites cdi_FETCH-LOGICAL-c350t-5fdfecab1ade8f0868bd9cca5141ee41f3b9446555b82d693fb761e57a345d2d3
container_end_page 4717
container_issue 10
container_start_page 4711
container_title Journal of mechanical science and technology
container_volume 31
creator Pandiyarajan, R.
Maran, P.
Marimuthu, S.
Ganesh, K. C.
description This study investigates the influence of zirconium dioxide (ZrO 2 ) and graphite (C) on the mechanical and tribological behavior of aluminum-based metal matrix composite (AA6061) fabricated through the stir casting. Metal matrix composites (MMC) are prepared with the following weight percentages: 100 % AA; 96 % AA-2 % ZrO 2 -2 % C; 88 % AA-6 % ZrO 2 -6 % C; 92 % AA-6 % ZrO 2 -2 % C; and 96 % AA-2 % ZrO 2 -6 % C. The microstructure and the mechanical and tribological behavior are characterized, and their correlations are obtained. Microstructural studies of the MMC reveal a uniform distribution of ZrO 2 and C particles in the AA6061 matrix. The addition of ZrO 2 improves the hardness from 6 % to 12 % (30 HRC to 40.94 HRC) and the ultimate tensile strength from 8 % to 15 % (128 MPa to 166.3 MPa) of the base metal (AA6061). The tribological behavior of wear and the frictional properties of the MMC are also studied by performing dry sliding wear test using pin-on-disc method. Result shows that the minimum and maximum wear rates of MMC are 5 E-9 and 6.2 E-9 (g/mm), respectively, at speed of 850 rpm and constant sliding distance of 1000 m.
doi_str_mv 10.1007/s12206-017-0917-3
format article
fullrecord <record><control><sourceid>proquest_nrf_k</sourceid><recordid>TN_cdi_nrf_kci_oai_kci_go_kr_ARTI_2570024</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2002035164</sourcerecordid><originalsourceid>FETCH-LOGICAL-c350t-5fdfecab1ade8f0868bd9cca5141ee41f3b9446555b82d693fb761e57a345d2d3</originalsourceid><addsrcrecordid>eNp1kEtLAzEUhYMoWKs_wN2AKxdjc_OameVQfBQqilQQNyGTSdrpY1KTqei_N-0Irtzcczl853I5CF0CvgGMs1EAQrBIMWQpLuKgR2gARSZSmhN2HPeM5ikr2NspOgthibEgDGCAnh-NXqi20WqdqLZOOt9Ubu3mB6MyC_XZOJ84m3QLk2xMF92NitBXot1m60LTmaQsBRYwevdPZDQ-RydWrYO5-NUher27nY0f0unT_WRcTlNNOe5SbmtrtKpA1Sa3OBd5VRdaKw4MjGFgaVUwJjjnVU5qUVBbZQIMzxRlvCY1HaLr_m7rrVzpRjrVHHTu5MrL8mU2kYRnGBMW2aue3Xr3sTOhk0u38218T5IIYMpB7CnoKe1dCN5YufXNRvlvCVjuS5Z9yTKWLPclSxozpM-EyLZz4_8u_x_6AdsMfUk</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2002035164</pqid></control><display><type>article</type><title>Mechanical and tribological behavior of the metal matrix composite AA6061/ZrO2/C</title><source>Springer Link</source><creator>Pandiyarajan, R. ; Maran, P. ; Marimuthu, S. ; Ganesh, K. C.</creator><creatorcontrib>Pandiyarajan, R. ; Maran, P. ; Marimuthu, S. ; Ganesh, K. C.</creatorcontrib><description>This study investigates the influence of zirconium dioxide (ZrO 2 ) and graphite (C) on the mechanical and tribological behavior of aluminum-based metal matrix composite (AA6061) fabricated through the stir casting. Metal matrix composites (MMC) are prepared with the following weight percentages: 100 % AA; 96 % AA-2 % ZrO 2 -2 % C; 88 % AA-6 % ZrO 2 -6 % C; 92 % AA-6 % ZrO 2 -2 % C; and 96 % AA-2 % ZrO 2 -6 % C. The microstructure and the mechanical and tribological behavior are characterized, and their correlations are obtained. Microstructural studies of the MMC reveal a uniform distribution of ZrO 2 and C particles in the AA6061 matrix. The addition of ZrO 2 improves the hardness from 6 % to 12 % (30 HRC to 40.94 HRC) and the ultimate tensile strength from 8 % to 15 % (128 MPa to 166.3 MPa) of the base metal (AA6061). The tribological behavior of wear and the frictional properties of the MMC are also studied by performing dry sliding wear test using pin-on-disc method. Result shows that the minimum and maximum wear rates of MMC are 5 E-9 and 6.2 E-9 (g/mm), respectively, at speed of 850 rpm and constant sliding distance of 1000 m.</description><identifier>ISSN: 1738-494X</identifier><identifier>EISSN: 1976-3824</identifier><identifier>DOI: 10.1007/s12206-017-0917-3</identifier><language>eng</language><publisher>Seoul: Korean Society of Steel Construction</publisher><subject>Aluminum base alloys ; Base metal ; Control ; Correlation analysis ; Dynamical Systems ; Engineering ; Frictional wear ; Industrial and Production Engineering ; Mechanical Engineering ; Metal matrix composites ; Microstructure ; Sliding friction ; Test procedures ; Tribology ; Ultimate tensile strength ; Vibration ; Wear rate ; Zirconium ; Zirconium dioxide ; 기계공학</subject><ispartof>Journal of Mechanical Science and Technology, 2017, 31(10), , pp.4711-4717</ispartof><rights>The Korean Society of Mechanical Engineers and Springer-Verlag GmbH Germany 2017</rights><rights>The Korean Society of Mechanical Engineers and Springer-Verlag GmbH Germany 2017.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c350t-5fdfecab1ade8f0868bd9cca5141ee41f3b9446555b82d693fb761e57a345d2d3</citedby><cites>FETCH-LOGICAL-c350t-5fdfecab1ade8f0868bd9cca5141ee41f3b9446555b82d693fb761e57a345d2d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002267073$$DAccess content in National Research Foundation of Korea (NRF)$$Hfree_for_read</backlink></links><search><creatorcontrib>Pandiyarajan, R.</creatorcontrib><creatorcontrib>Maran, P.</creatorcontrib><creatorcontrib>Marimuthu, S.</creatorcontrib><creatorcontrib>Ganesh, K. C.</creatorcontrib><title>Mechanical and tribological behavior of the metal matrix composite AA6061/ZrO2/C</title><title>Journal of mechanical science and technology</title><addtitle>J Mech Sci Technol</addtitle><description>This study investigates the influence of zirconium dioxide (ZrO 2 ) and graphite (C) on the mechanical and tribological behavior of aluminum-based metal matrix composite (AA6061) fabricated through the stir casting. Metal matrix composites (MMC) are prepared with the following weight percentages: 100 % AA; 96 % AA-2 % ZrO 2 -2 % C; 88 % AA-6 % ZrO 2 -6 % C; 92 % AA-6 % ZrO 2 -2 % C; and 96 % AA-2 % ZrO 2 -6 % C. The microstructure and the mechanical and tribological behavior are characterized, and their correlations are obtained. Microstructural studies of the MMC reveal a uniform distribution of ZrO 2 and C particles in the AA6061 matrix. The addition of ZrO 2 improves the hardness from 6 % to 12 % (30 HRC to 40.94 HRC) and the ultimate tensile strength from 8 % to 15 % (128 MPa to 166.3 MPa) of the base metal (AA6061). The tribological behavior of wear and the frictional properties of the MMC are also studied by performing dry sliding wear test using pin-on-disc method. Result shows that the minimum and maximum wear rates of MMC are 5 E-9 and 6.2 E-9 (g/mm), respectively, at speed of 850 rpm and constant sliding distance of 1000 m.</description><subject>Aluminum base alloys</subject><subject>Base metal</subject><subject>Control</subject><subject>Correlation analysis</subject><subject>Dynamical Systems</subject><subject>Engineering</subject><subject>Frictional wear</subject><subject>Industrial and Production Engineering</subject><subject>Mechanical Engineering</subject><subject>Metal matrix composites</subject><subject>Microstructure</subject><subject>Sliding friction</subject><subject>Test procedures</subject><subject>Tribology</subject><subject>Ultimate tensile strength</subject><subject>Vibration</subject><subject>Wear rate</subject><subject>Zirconium</subject><subject>Zirconium dioxide</subject><subject>기계공학</subject><issn>1738-494X</issn><issn>1976-3824</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLAzEUhYMoWKs_wN2AKxdjc_OameVQfBQqilQQNyGTSdrpY1KTqei_N-0Irtzcczl853I5CF0CvgGMs1EAQrBIMWQpLuKgR2gARSZSmhN2HPeM5ikr2NspOgthibEgDGCAnh-NXqi20WqdqLZOOt9Ubu3mB6MyC_XZOJ84m3QLk2xMF92NitBXot1m60LTmaQsBRYwevdPZDQ-RydWrYO5-NUher27nY0f0unT_WRcTlNNOe5SbmtrtKpA1Sa3OBd5VRdaKw4MjGFgaVUwJjjnVU5qUVBbZQIMzxRlvCY1HaLr_m7rrVzpRjrVHHTu5MrL8mU2kYRnGBMW2aue3Xr3sTOhk0u38218T5IIYMpB7CnoKe1dCN5YufXNRvlvCVjuS5Z9yTKWLPclSxozpM-EyLZz4_8u_x_6AdsMfUk</recordid><startdate>20171001</startdate><enddate>20171001</enddate><creator>Pandiyarajan, R.</creator><creator>Maran, P.</creator><creator>Marimuthu, S.</creator><creator>Ganesh, K. C.</creator><general>Korean Society of Steel Construction</general><general>Springer Nature B.V</general><general>대한기계학회</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>S0W</scope><scope>ACYCR</scope></search><sort><creationdate>20171001</creationdate><title>Mechanical and tribological behavior of the metal matrix composite AA6061/ZrO2/C</title><author>Pandiyarajan, R. ; Maran, P. ; Marimuthu, S. ; Ganesh, K. C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c350t-5fdfecab1ade8f0868bd9cca5141ee41f3b9446555b82d693fb761e57a345d2d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Aluminum base alloys</topic><topic>Base metal</topic><topic>Control</topic><topic>Correlation analysis</topic><topic>Dynamical Systems</topic><topic>Engineering</topic><topic>Frictional wear</topic><topic>Industrial and Production Engineering</topic><topic>Mechanical Engineering</topic><topic>Metal matrix composites</topic><topic>Microstructure</topic><topic>Sliding friction</topic><topic>Test procedures</topic><topic>Tribology</topic><topic>Ultimate tensile strength</topic><topic>Vibration</topic><topic>Wear rate</topic><topic>Zirconium</topic><topic>Zirconium dioxide</topic><topic>기계공학</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pandiyarajan, R.</creatorcontrib><creatorcontrib>Maran, P.</creatorcontrib><creatorcontrib>Marimuthu, S.</creatorcontrib><creatorcontrib>Ganesh, K. C.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>DELNET Engineering &amp; Technology Collection</collection><collection>Korean Citation Index</collection><jtitle>Journal of mechanical science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pandiyarajan, R.</au><au>Maran, P.</au><au>Marimuthu, S.</au><au>Ganesh, K. C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanical and tribological behavior of the metal matrix composite AA6061/ZrO2/C</atitle><jtitle>Journal of mechanical science and technology</jtitle><stitle>J Mech Sci Technol</stitle><date>2017-10-01</date><risdate>2017</risdate><volume>31</volume><issue>10</issue><spage>4711</spage><epage>4717</epage><pages>4711-4717</pages><issn>1738-494X</issn><eissn>1976-3824</eissn><abstract>This study investigates the influence of zirconium dioxide (ZrO 2 ) and graphite (C) on the mechanical and tribological behavior of aluminum-based metal matrix composite (AA6061) fabricated through the stir casting. Metal matrix composites (MMC) are prepared with the following weight percentages: 100 % AA; 96 % AA-2 % ZrO 2 -2 % C; 88 % AA-6 % ZrO 2 -6 % C; 92 % AA-6 % ZrO 2 -2 % C; and 96 % AA-2 % ZrO 2 -6 % C. The microstructure and the mechanical and tribological behavior are characterized, and their correlations are obtained. Microstructural studies of the MMC reveal a uniform distribution of ZrO 2 and C particles in the AA6061 matrix. The addition of ZrO 2 improves the hardness from 6 % to 12 % (30 HRC to 40.94 HRC) and the ultimate tensile strength from 8 % to 15 % (128 MPa to 166.3 MPa) of the base metal (AA6061). The tribological behavior of wear and the frictional properties of the MMC are also studied by performing dry sliding wear test using pin-on-disc method. Result shows that the minimum and maximum wear rates of MMC are 5 E-9 and 6.2 E-9 (g/mm), respectively, at speed of 850 rpm and constant sliding distance of 1000 m.</abstract><cop>Seoul</cop><pub>Korean Society of Steel Construction</pub><doi>10.1007/s12206-017-0917-3</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1738-494X
ispartof Journal of Mechanical Science and Technology, 2017, 31(10), , pp.4711-4717
issn 1738-494X
1976-3824
language eng
recordid cdi_nrf_kci_oai_kci_go_kr_ARTI_2570024
source Springer Link
subjects Aluminum base alloys
Base metal
Control
Correlation analysis
Dynamical Systems
Engineering
Frictional wear
Industrial and Production Engineering
Mechanical Engineering
Metal matrix composites
Microstructure
Sliding friction
Test procedures
Tribology
Ultimate tensile strength
Vibration
Wear rate
Zirconium
Zirconium dioxide
기계공학
title Mechanical and tribological behavior of the metal matrix composite AA6061/ZrO2/C
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T06%3A49%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_nrf_k&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanical%20and%20tribological%20behavior%20of%20the%20metal%20matrix%20composite%20AA6061/ZrO2/C&rft.jtitle=Journal%20of%20mechanical%20science%20and%20technology&rft.au=Pandiyarajan,%20R.&rft.date=2017-10-01&rft.volume=31&rft.issue=10&rft.spage=4711&rft.epage=4717&rft.pages=4711-4717&rft.issn=1738-494X&rft.eissn=1976-3824&rft_id=info:doi/10.1007/s12206-017-0917-3&rft_dat=%3Cproquest_nrf_k%3E2002035164%3C/proquest_nrf_k%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c350t-5fdfecab1ade8f0868bd9cca5141ee41f3b9446555b82d693fb761e57a345d2d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2002035164&rft_id=info:pmid/&rfr_iscdi=true