Loading…
Mechanical and tribological behavior of the metal matrix composite AA6061/ZrO2/C
This study investigates the influence of zirconium dioxide (ZrO 2 ) and graphite (C) on the mechanical and tribological behavior of aluminum-based metal matrix composite (AA6061) fabricated through the stir casting. Metal matrix composites (MMC) are prepared with the following weight percentages: 10...
Saved in:
Published in: | Journal of mechanical science and technology 2017, 31(10), , pp.4711-4717 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c350t-5fdfecab1ade8f0868bd9cca5141ee41f3b9446555b82d693fb761e57a345d2d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c350t-5fdfecab1ade8f0868bd9cca5141ee41f3b9446555b82d693fb761e57a345d2d3 |
container_end_page | 4717 |
container_issue | 10 |
container_start_page | 4711 |
container_title | Journal of mechanical science and technology |
container_volume | 31 |
creator | Pandiyarajan, R. Maran, P. Marimuthu, S. Ganesh, K. C. |
description | This study investigates the influence of zirconium dioxide (ZrO
2
) and graphite (C) on the mechanical and tribological behavior of aluminum-based metal matrix composite (AA6061) fabricated through the stir casting. Metal matrix composites (MMC) are prepared with the following weight percentages: 100 % AA; 96 % AA-2 % ZrO
2
-2 % C; 88 % AA-6 % ZrO
2
-6 % C; 92 % AA-6 % ZrO
2
-2 % C; and 96 % AA-2 % ZrO
2
-6 % C. The microstructure and the mechanical and tribological behavior are characterized, and their correlations are obtained. Microstructural studies of the MMC reveal a uniform distribution of ZrO
2
and C particles in the AA6061 matrix. The addition of ZrO
2
improves the hardness from 6 % to 12 % (30 HRC to 40.94 HRC) and the ultimate tensile strength from 8 % to 15 % (128 MPa to 166.3 MPa) of the base metal (AA6061). The tribological behavior of wear and the frictional properties of the MMC are also studied by performing dry sliding wear test using pin-on-disc method. Result shows that the minimum and maximum wear rates of MMC are 5 E-9 and 6.2 E-9 (g/mm), respectively, at speed of 850 rpm and constant sliding distance of 1000 m. |
doi_str_mv | 10.1007/s12206-017-0917-3 |
format | article |
fullrecord | <record><control><sourceid>proquest_nrf_k</sourceid><recordid>TN_cdi_nrf_kci_oai_kci_go_kr_ARTI_2570024</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2002035164</sourcerecordid><originalsourceid>FETCH-LOGICAL-c350t-5fdfecab1ade8f0868bd9cca5141ee41f3b9446555b82d693fb761e57a345d2d3</originalsourceid><addsrcrecordid>eNp1kEtLAzEUhYMoWKs_wN2AKxdjc_OameVQfBQqilQQNyGTSdrpY1KTqei_N-0Irtzcczl853I5CF0CvgGMs1EAQrBIMWQpLuKgR2gARSZSmhN2HPeM5ikr2NspOgthibEgDGCAnh-NXqi20WqdqLZOOt9Ubu3mB6MyC_XZOJ84m3QLk2xMF92NitBXot1m60LTmaQsBRYwevdPZDQ-RydWrYO5-NUher27nY0f0unT_WRcTlNNOe5SbmtrtKpA1Sa3OBd5VRdaKw4MjGFgaVUwJjjnVU5qUVBbZQIMzxRlvCY1HaLr_m7rrVzpRjrVHHTu5MrL8mU2kYRnGBMW2aue3Xr3sTOhk0u38218T5IIYMpB7CnoKe1dCN5YufXNRvlvCVjuS5Z9yTKWLPclSxozpM-EyLZz4_8u_x_6AdsMfUk</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2002035164</pqid></control><display><type>article</type><title>Mechanical and tribological behavior of the metal matrix composite AA6061/ZrO2/C</title><source>Springer Link</source><creator>Pandiyarajan, R. ; Maran, P. ; Marimuthu, S. ; Ganesh, K. C.</creator><creatorcontrib>Pandiyarajan, R. ; Maran, P. ; Marimuthu, S. ; Ganesh, K. C.</creatorcontrib><description>This study investigates the influence of zirconium dioxide (ZrO
2
) and graphite (C) on the mechanical and tribological behavior of aluminum-based metal matrix composite (AA6061) fabricated through the stir casting. Metal matrix composites (MMC) are prepared with the following weight percentages: 100 % AA; 96 % AA-2 % ZrO
2
-2 % C; 88 % AA-6 % ZrO
2
-6 % C; 92 % AA-6 % ZrO
2
-2 % C; and 96 % AA-2 % ZrO
2
-6 % C. The microstructure and the mechanical and tribological behavior are characterized, and their correlations are obtained. Microstructural studies of the MMC reveal a uniform distribution of ZrO
2
and C particles in the AA6061 matrix. The addition of ZrO
2
improves the hardness from 6 % to 12 % (30 HRC to 40.94 HRC) and the ultimate tensile strength from 8 % to 15 % (128 MPa to 166.3 MPa) of the base metal (AA6061). The tribological behavior of wear and the frictional properties of the MMC are also studied by performing dry sliding wear test using pin-on-disc method. Result shows that the minimum and maximum wear rates of MMC are 5 E-9 and 6.2 E-9 (g/mm), respectively, at speed of 850 rpm and constant sliding distance of 1000 m.</description><identifier>ISSN: 1738-494X</identifier><identifier>EISSN: 1976-3824</identifier><identifier>DOI: 10.1007/s12206-017-0917-3</identifier><language>eng</language><publisher>Seoul: Korean Society of Steel Construction</publisher><subject>Aluminum base alloys ; Base metal ; Control ; Correlation analysis ; Dynamical Systems ; Engineering ; Frictional wear ; Industrial and Production Engineering ; Mechanical Engineering ; Metal matrix composites ; Microstructure ; Sliding friction ; Test procedures ; Tribology ; Ultimate tensile strength ; Vibration ; Wear rate ; Zirconium ; Zirconium dioxide ; 기계공학</subject><ispartof>Journal of Mechanical Science and Technology, 2017, 31(10), , pp.4711-4717</ispartof><rights>The Korean Society of Mechanical Engineers and Springer-Verlag GmbH Germany 2017</rights><rights>The Korean Society of Mechanical Engineers and Springer-Verlag GmbH Germany 2017.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c350t-5fdfecab1ade8f0868bd9cca5141ee41f3b9446555b82d693fb761e57a345d2d3</citedby><cites>FETCH-LOGICAL-c350t-5fdfecab1ade8f0868bd9cca5141ee41f3b9446555b82d693fb761e57a345d2d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002267073$$DAccess content in National Research Foundation of Korea (NRF)$$Hfree_for_read</backlink></links><search><creatorcontrib>Pandiyarajan, R.</creatorcontrib><creatorcontrib>Maran, P.</creatorcontrib><creatorcontrib>Marimuthu, S.</creatorcontrib><creatorcontrib>Ganesh, K. C.</creatorcontrib><title>Mechanical and tribological behavior of the metal matrix composite AA6061/ZrO2/C</title><title>Journal of mechanical science and technology</title><addtitle>J Mech Sci Technol</addtitle><description>This study investigates the influence of zirconium dioxide (ZrO
2
) and graphite (C) on the mechanical and tribological behavior of aluminum-based metal matrix composite (AA6061) fabricated through the stir casting. Metal matrix composites (MMC) are prepared with the following weight percentages: 100 % AA; 96 % AA-2 % ZrO
2
-2 % C; 88 % AA-6 % ZrO
2
-6 % C; 92 % AA-6 % ZrO
2
-2 % C; and 96 % AA-2 % ZrO
2
-6 % C. The microstructure and the mechanical and tribological behavior are characterized, and their correlations are obtained. Microstructural studies of the MMC reveal a uniform distribution of ZrO
2
and C particles in the AA6061 matrix. The addition of ZrO
2
improves the hardness from 6 % to 12 % (30 HRC to 40.94 HRC) and the ultimate tensile strength from 8 % to 15 % (128 MPa to 166.3 MPa) of the base metal (AA6061). The tribological behavior of wear and the frictional properties of the MMC are also studied by performing dry sliding wear test using pin-on-disc method. Result shows that the minimum and maximum wear rates of MMC are 5 E-9 and 6.2 E-9 (g/mm), respectively, at speed of 850 rpm and constant sliding distance of 1000 m.</description><subject>Aluminum base alloys</subject><subject>Base metal</subject><subject>Control</subject><subject>Correlation analysis</subject><subject>Dynamical Systems</subject><subject>Engineering</subject><subject>Frictional wear</subject><subject>Industrial and Production Engineering</subject><subject>Mechanical Engineering</subject><subject>Metal matrix composites</subject><subject>Microstructure</subject><subject>Sliding friction</subject><subject>Test procedures</subject><subject>Tribology</subject><subject>Ultimate tensile strength</subject><subject>Vibration</subject><subject>Wear rate</subject><subject>Zirconium</subject><subject>Zirconium dioxide</subject><subject>기계공학</subject><issn>1738-494X</issn><issn>1976-3824</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLAzEUhYMoWKs_wN2AKxdjc_OameVQfBQqilQQNyGTSdrpY1KTqei_N-0Irtzcczl853I5CF0CvgGMs1EAQrBIMWQpLuKgR2gARSZSmhN2HPeM5ikr2NspOgthibEgDGCAnh-NXqi20WqdqLZOOt9Ubu3mB6MyC_XZOJ84m3QLk2xMF92NitBXot1m60LTmaQsBRYwevdPZDQ-RydWrYO5-NUher27nY0f0unT_WRcTlNNOe5SbmtrtKpA1Sa3OBd5VRdaKw4MjGFgaVUwJjjnVU5qUVBbZQIMzxRlvCY1HaLr_m7rrVzpRjrVHHTu5MrL8mU2kYRnGBMW2aue3Xr3sTOhk0u38218T5IIYMpB7CnoKe1dCN5YufXNRvlvCVjuS5Z9yTKWLPclSxozpM-EyLZz4_8u_x_6AdsMfUk</recordid><startdate>20171001</startdate><enddate>20171001</enddate><creator>Pandiyarajan, R.</creator><creator>Maran, P.</creator><creator>Marimuthu, S.</creator><creator>Ganesh, K. C.</creator><general>Korean Society of Steel Construction</general><general>Springer Nature B.V</general><general>대한기계학회</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>S0W</scope><scope>ACYCR</scope></search><sort><creationdate>20171001</creationdate><title>Mechanical and tribological behavior of the metal matrix composite AA6061/ZrO2/C</title><author>Pandiyarajan, R. ; Maran, P. ; Marimuthu, S. ; Ganesh, K. C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c350t-5fdfecab1ade8f0868bd9cca5141ee41f3b9446555b82d693fb761e57a345d2d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Aluminum base alloys</topic><topic>Base metal</topic><topic>Control</topic><topic>Correlation analysis</topic><topic>Dynamical Systems</topic><topic>Engineering</topic><topic>Frictional wear</topic><topic>Industrial and Production Engineering</topic><topic>Mechanical Engineering</topic><topic>Metal matrix composites</topic><topic>Microstructure</topic><topic>Sliding friction</topic><topic>Test procedures</topic><topic>Tribology</topic><topic>Ultimate tensile strength</topic><topic>Vibration</topic><topic>Wear rate</topic><topic>Zirconium</topic><topic>Zirconium dioxide</topic><topic>기계공학</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pandiyarajan, R.</creatorcontrib><creatorcontrib>Maran, P.</creatorcontrib><creatorcontrib>Marimuthu, S.</creatorcontrib><creatorcontrib>Ganesh, K. C.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>DELNET Engineering & Technology Collection</collection><collection>Korean Citation Index</collection><jtitle>Journal of mechanical science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pandiyarajan, R.</au><au>Maran, P.</au><au>Marimuthu, S.</au><au>Ganesh, K. C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanical and tribological behavior of the metal matrix composite AA6061/ZrO2/C</atitle><jtitle>Journal of mechanical science and technology</jtitle><stitle>J Mech Sci Technol</stitle><date>2017-10-01</date><risdate>2017</risdate><volume>31</volume><issue>10</issue><spage>4711</spage><epage>4717</epage><pages>4711-4717</pages><issn>1738-494X</issn><eissn>1976-3824</eissn><abstract>This study investigates the influence of zirconium dioxide (ZrO
2
) and graphite (C) on the mechanical and tribological behavior of aluminum-based metal matrix composite (AA6061) fabricated through the stir casting. Metal matrix composites (MMC) are prepared with the following weight percentages: 100 % AA; 96 % AA-2 % ZrO
2
-2 % C; 88 % AA-6 % ZrO
2
-6 % C; 92 % AA-6 % ZrO
2
-2 % C; and 96 % AA-2 % ZrO
2
-6 % C. The microstructure and the mechanical and tribological behavior are characterized, and their correlations are obtained. Microstructural studies of the MMC reveal a uniform distribution of ZrO
2
and C particles in the AA6061 matrix. The addition of ZrO
2
improves the hardness from 6 % to 12 % (30 HRC to 40.94 HRC) and the ultimate tensile strength from 8 % to 15 % (128 MPa to 166.3 MPa) of the base metal (AA6061). The tribological behavior of wear and the frictional properties of the MMC are also studied by performing dry sliding wear test using pin-on-disc method. Result shows that the minimum and maximum wear rates of MMC are 5 E-9 and 6.2 E-9 (g/mm), respectively, at speed of 850 rpm and constant sliding distance of 1000 m.</abstract><cop>Seoul</cop><pub>Korean Society of Steel Construction</pub><doi>10.1007/s12206-017-0917-3</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1738-494X |
ispartof | Journal of Mechanical Science and Technology, 2017, 31(10), , pp.4711-4717 |
issn | 1738-494X 1976-3824 |
language | eng |
recordid | cdi_nrf_kci_oai_kci_go_kr_ARTI_2570024 |
source | Springer Link |
subjects | Aluminum base alloys Base metal Control Correlation analysis Dynamical Systems Engineering Frictional wear Industrial and Production Engineering Mechanical Engineering Metal matrix composites Microstructure Sliding friction Test procedures Tribology Ultimate tensile strength Vibration Wear rate Zirconium Zirconium dioxide 기계공학 |
title | Mechanical and tribological behavior of the metal matrix composite AA6061/ZrO2/C |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T06%3A49%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_nrf_k&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanical%20and%20tribological%20behavior%20of%20the%20metal%20matrix%20composite%20AA6061/ZrO2/C&rft.jtitle=Journal%20of%20mechanical%20science%20and%20technology&rft.au=Pandiyarajan,%20R.&rft.date=2017-10-01&rft.volume=31&rft.issue=10&rft.spage=4711&rft.epage=4717&rft.pages=4711-4717&rft.issn=1738-494X&rft.eissn=1976-3824&rft_id=info:doi/10.1007/s12206-017-0917-3&rft_dat=%3Cproquest_nrf_k%3E2002035164%3C/proquest_nrf_k%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c350t-5fdfecab1ade8f0868bd9cca5141ee41f3b9446555b82d693fb761e57a345d2d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2002035164&rft_id=info:pmid/&rfr_iscdi=true |