Loading…

MORN-domain protein regulates growth and seed production and enhances freezing tolerance in Arabidopsis

AtRGP (AT4G17080, Arabidopsis thaliana reduction in growth and productivity) contains two N-terminal transmembrane helices and seven membrane occupation and recognition nexus motifs at its C-terminus, and associates with phosphatidylinositol phosphate kinase. To elucidate the function of AtRGP, we e...

Full description

Saved in:
Bibliographic Details
Published in:Plant biotechnology reports 2014, 8(2), , pp.229-241
Main Authors: Lee, Jeongyeo, Han, Ching-Tack, Kim, HyeRan, Hur, Yoonkang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:AtRGP (AT4G17080, Arabidopsis thaliana reduction in growth and productivity) contains two N-terminal transmembrane helices and seven membrane occupation and recognition nexus motifs at its C-terminus, and associates with phosphatidylinositol phosphate kinase. To elucidate the function of AtRGP, we employed mutant plants to analyze gene expression, plant phenotypes, protein localization, structure and function of the chloroplast, and freezing tolerance. Overexpression of AtRGP increased growth rate, hypocotyl elongation, leaf size, seed production, photosynthetic rate, and freezing tolerance, and promoted chloroplast organization and stacking of grana. By contrast, Atrgp null mutants exhibited a smaller plant size, reduced seed production, photosynthetic rate, and freezing tolerance, and displayed abnormal chloroplast organization with insufficient stacking of grana. Considering these data, we postulate that AtRGP may bind transiently to the chloroplast envelope and interact with other proteins under certain conditions, thereby regulating cellular processes involved in growth and abiotic stress responses.
ISSN:1863-5466
1863-5474
DOI:10.1007/s11816-014-0315-6