Loading…
Two-shaft stationary gas turbine engine gas path diagnostics using fuzzy logic
Our objective was to develop a Fuzzy logic (FL) based industrial two-shaft gas turbine gas path diagnostic method based on gas path measurement deviations. Unlike most of the available FL based diagnostic techniques, the proposed method focused on a quantitative analysis of both single and multiple...
Saved in:
Published in: | Journal of mechanical science and technology 2017, 31(11), , pp.5593-5602 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c387t-d3c8e52a9bd98e495dfd1ba6fecccc83149626ef16fe85dd44a146469a784ab43 |
---|---|
cites | cdi_FETCH-LOGICAL-c387t-d3c8e52a9bd98e495dfd1ba6fecccc83149626ef16fe85dd44a146469a784ab43 |
container_end_page | 5602 |
container_issue | 11 |
container_start_page | 5593 |
container_title | Journal of mechanical science and technology |
container_volume | 31 |
creator | Amare, F. D. Gilani, S. I. Aklilu, B. T. Mojahid, A. |
description | Our objective was to develop a Fuzzy logic (FL) based industrial two-shaft gas turbine gas path diagnostic method based on gas path measurement deviations. Unlike most of the available FL based diagnostic techniques, the proposed method focused on a quantitative analysis of both single and multiple component faults. The data required to demonstrate and verify the method was generated from a simulation program, tuned to represent a GE LM2500 engine running at an existing oil & gas plant, taking into account the two most common engine degradation causes, fouling and erosion. Gaussian noise is superimposed into the data to account measurement uncertainty. Finally, the fault isolation and quantification effectiveness of the proposed method was tested for single, double and triple component fault scenarios. The test results show that the implanted single, double and triple component fault case patterns are isolated with an average success rate of 96 %, 92 % and 89 % and quantified with an average accuracy of 83 %, 80 % and 78.5 %, respectively. |
doi_str_mv | 10.1007/s12206-017-1053-9 |
format | article |
fullrecord | <record><control><sourceid>proquest_nrf_k</sourceid><recordid>TN_cdi_nrf_kci_oai_kci_go_kr_ARTI_2785823</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2001515179</sourcerecordid><originalsourceid>FETCH-LOGICAL-c387t-d3c8e52a9bd98e495dfd1ba6fecccc83149626ef16fe85dd44a146469a784ab43</originalsourceid><addsrcrecordid>eNp1kM1LwzAchosoOKd_gLeAJw_RfLVJjmP4MRAFmeAtpG3SZZvNTFpk--tNreDJ5PCGH8_7IzxZdonRDUaI30ZMCCogwhxilFMoj7IJlryAVBB2nN6cCsgkez_NzmJcI1QQhvEke15-eRhX2nYgdrpzvtVhDxodQdeH0rUGmLYZYhjtdLcCtdNN62Pnqgj66NoG2P5w2IOtb1x1np1YvY3m4jen2dv93XL-CJ9eHhbz2ROsqOAdrGklTE60LGspDJN5bWtc6sKaKh1BMZMFKYzFaSLyumZMY1awQmoumC4ZnWbX4942WLWpnPLa_WTj1Sao2etyoQgXuSA0sVcjuwv-szexU2vfhzZ9TxGEcJ4ul4nCI1UFH2MwVu2C-0gyFEZqUKxGxSopVoNiNXTI2ImJbRsT_jb_X_oGQ-F-0g</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2001515179</pqid></control><display><type>article</type><title>Two-shaft stationary gas turbine engine gas path diagnostics using fuzzy logic</title><source>Springer Nature</source><creator>Amare, F. D. ; Gilani, S. I. ; Aklilu, B. T. ; Mojahid, A.</creator><creatorcontrib>Amare, F. D. ; Gilani, S. I. ; Aklilu, B. T. ; Mojahid, A.</creatorcontrib><description>Our objective was to develop a Fuzzy logic (FL) based industrial two-shaft gas turbine gas path diagnostic method based on gas path measurement deviations. Unlike most of the available FL based diagnostic techniques, the proposed method focused on a quantitative analysis of both single and multiple component faults. The data required to demonstrate and verify the method was generated from a simulation program, tuned to represent a GE LM2500 engine running at an existing oil & gas plant, taking into account the two most common engine degradation causes, fouling and erosion. Gaussian noise is superimposed into the data to account measurement uncertainty. Finally, the fault isolation and quantification effectiveness of the proposed method was tested for single, double and triple component fault scenarios. The test results show that the implanted single, double and triple component fault case patterns are isolated with an average success rate of 96 %, 92 % and 89 % and quantified with an average accuracy of 83 %, 80 % and 78.5 %, respectively.</description><identifier>ISSN: 1738-494X</identifier><identifier>EISSN: 1976-3824</identifier><identifier>DOI: 10.1007/s12206-017-1053-9</identifier><language>eng</language><publisher>Seoul: Korean Society of Mechanical Engineers</publisher><subject>Control ; Diagnostic systems ; Dynamical Systems ; Engineering ; Erosion mechanisms ; Faults ; Fuzzy logic ; Gas turbine engines ; GE engines ; Industrial and Production Engineering ; Mechanical Engineering ; Natural gas ; Quantitative analysis ; Random noise ; Vibration ; 기계공학</subject><ispartof>Journal of Mechanical Science and Technology, 2017, 31(11), , pp.5593-5602</ispartof><rights>The Korean Society of Mechanical Engineers and Springer-Verlag GmbH Germany, part of Springer Nature 2017</rights><rights>The Korean Society of Mechanical Engineers and Springer-Verlag GmbH Germany, part of Springer Nature 2017.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c387t-d3c8e52a9bd98e495dfd1ba6fecccc83149626ef16fe85dd44a146469a784ab43</citedby><cites>FETCH-LOGICAL-c387t-d3c8e52a9bd98e495dfd1ba6fecccc83149626ef16fe85dd44a146469a784ab43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002281090$$DAccess content in National Research Foundation of Korea (NRF)$$Hfree_for_read</backlink></links><search><creatorcontrib>Amare, F. D.</creatorcontrib><creatorcontrib>Gilani, S. I.</creatorcontrib><creatorcontrib>Aklilu, B. T.</creatorcontrib><creatorcontrib>Mojahid, A.</creatorcontrib><title>Two-shaft stationary gas turbine engine gas path diagnostics using fuzzy logic</title><title>Journal of mechanical science and technology</title><addtitle>J Mech Sci Technol</addtitle><description>Our objective was to develop a Fuzzy logic (FL) based industrial two-shaft gas turbine gas path diagnostic method based on gas path measurement deviations. Unlike most of the available FL based diagnostic techniques, the proposed method focused on a quantitative analysis of both single and multiple component faults. The data required to demonstrate and verify the method was generated from a simulation program, tuned to represent a GE LM2500 engine running at an existing oil & gas plant, taking into account the two most common engine degradation causes, fouling and erosion. Gaussian noise is superimposed into the data to account measurement uncertainty. Finally, the fault isolation and quantification effectiveness of the proposed method was tested for single, double and triple component fault scenarios. The test results show that the implanted single, double and triple component fault case patterns are isolated with an average success rate of 96 %, 92 % and 89 % and quantified with an average accuracy of 83 %, 80 % and 78.5 %, respectively.</description><subject>Control</subject><subject>Diagnostic systems</subject><subject>Dynamical Systems</subject><subject>Engineering</subject><subject>Erosion mechanisms</subject><subject>Faults</subject><subject>Fuzzy logic</subject><subject>Gas turbine engines</subject><subject>GE engines</subject><subject>Industrial and Production Engineering</subject><subject>Mechanical Engineering</subject><subject>Natural gas</subject><subject>Quantitative analysis</subject><subject>Random noise</subject><subject>Vibration</subject><subject>기계공학</subject><issn>1738-494X</issn><issn>1976-3824</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kM1LwzAchosoOKd_gLeAJw_RfLVJjmP4MRAFmeAtpG3SZZvNTFpk--tNreDJ5PCGH8_7IzxZdonRDUaI30ZMCCogwhxilFMoj7IJlryAVBB2nN6cCsgkez_NzmJcI1QQhvEke15-eRhX2nYgdrpzvtVhDxodQdeH0rUGmLYZYhjtdLcCtdNN62Pnqgj66NoG2P5w2IOtb1x1np1YvY3m4jen2dv93XL-CJ9eHhbz2ROsqOAdrGklTE60LGspDJN5bWtc6sKaKh1BMZMFKYzFaSLyumZMY1awQmoumC4ZnWbX4942WLWpnPLa_WTj1Sao2etyoQgXuSA0sVcjuwv-szexU2vfhzZ9TxGEcJ4ul4nCI1UFH2MwVu2C-0gyFEZqUKxGxSopVoNiNXTI2ImJbRsT_jb_X_oGQ-F-0g</recordid><startdate>20171101</startdate><enddate>20171101</enddate><creator>Amare, F. D.</creator><creator>Gilani, S. I.</creator><creator>Aklilu, B. T.</creator><creator>Mojahid, A.</creator><general>Korean Society of Mechanical Engineers</general><general>Springer Nature B.V</general><general>대한기계학회</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>S0W</scope><scope>ACYCR</scope></search><sort><creationdate>20171101</creationdate><title>Two-shaft stationary gas turbine engine gas path diagnostics using fuzzy logic</title><author>Amare, F. D. ; Gilani, S. I. ; Aklilu, B. T. ; Mojahid, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c387t-d3c8e52a9bd98e495dfd1ba6fecccc83149626ef16fe85dd44a146469a784ab43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Control</topic><topic>Diagnostic systems</topic><topic>Dynamical Systems</topic><topic>Engineering</topic><topic>Erosion mechanisms</topic><topic>Faults</topic><topic>Fuzzy logic</topic><topic>Gas turbine engines</topic><topic>GE engines</topic><topic>Industrial and Production Engineering</topic><topic>Mechanical Engineering</topic><topic>Natural gas</topic><topic>Quantitative analysis</topic><topic>Random noise</topic><topic>Vibration</topic><topic>기계공학</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Amare, F. D.</creatorcontrib><creatorcontrib>Gilani, S. I.</creatorcontrib><creatorcontrib>Aklilu, B. T.</creatorcontrib><creatorcontrib>Mojahid, A.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Database (Proquest)</collection><collection>ProQuest Central</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>DELNET Engineering & Technology Collection</collection><collection>Korean Citation Index</collection><jtitle>Journal of mechanical science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Amare, F. D.</au><au>Gilani, S. I.</au><au>Aklilu, B. T.</au><au>Mojahid, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Two-shaft stationary gas turbine engine gas path diagnostics using fuzzy logic</atitle><jtitle>Journal of mechanical science and technology</jtitle><stitle>J Mech Sci Technol</stitle><date>2017-11-01</date><risdate>2017</risdate><volume>31</volume><issue>11</issue><spage>5593</spage><epage>5602</epage><pages>5593-5602</pages><issn>1738-494X</issn><eissn>1976-3824</eissn><abstract>Our objective was to develop a Fuzzy logic (FL) based industrial two-shaft gas turbine gas path diagnostic method based on gas path measurement deviations. Unlike most of the available FL based diagnostic techniques, the proposed method focused on a quantitative analysis of both single and multiple component faults. The data required to demonstrate and verify the method was generated from a simulation program, tuned to represent a GE LM2500 engine running at an existing oil & gas plant, taking into account the two most common engine degradation causes, fouling and erosion. Gaussian noise is superimposed into the data to account measurement uncertainty. Finally, the fault isolation and quantification effectiveness of the proposed method was tested for single, double and triple component fault scenarios. The test results show that the implanted single, double and triple component fault case patterns are isolated with an average success rate of 96 %, 92 % and 89 % and quantified with an average accuracy of 83 %, 80 % and 78.5 %, respectively.</abstract><cop>Seoul</cop><pub>Korean Society of Mechanical Engineers</pub><doi>10.1007/s12206-017-1053-9</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1738-494X |
ispartof | Journal of Mechanical Science and Technology, 2017, 31(11), , pp.5593-5602 |
issn | 1738-494X 1976-3824 |
language | eng |
recordid | cdi_nrf_kci_oai_kci_go_kr_ARTI_2785823 |
source | Springer Nature |
subjects | Control Diagnostic systems Dynamical Systems Engineering Erosion mechanisms Faults Fuzzy logic Gas turbine engines GE engines Industrial and Production Engineering Mechanical Engineering Natural gas Quantitative analysis Random noise Vibration 기계공학 |
title | Two-shaft stationary gas turbine engine gas path diagnostics using fuzzy logic |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T07%3A47%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_nrf_k&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Two-shaft%20stationary%20gas%20turbine%20engine%20gas%20path%20diagnostics%20using%20fuzzy%20logic&rft.jtitle=Journal%20of%20mechanical%20science%20and%20technology&rft.au=Amare,%20F.%20D.&rft.date=2017-11-01&rft.volume=31&rft.issue=11&rft.spage=5593&rft.epage=5602&rft.pages=5593-5602&rft.issn=1738-494X&rft.eissn=1976-3824&rft_id=info:doi/10.1007/s12206-017-1053-9&rft_dat=%3Cproquest_nrf_k%3E2001515179%3C/proquest_nrf_k%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c387t-d3c8e52a9bd98e495dfd1ba6fecccc83149626ef16fe85dd44a146469a784ab43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2001515179&rft_id=info:pmid/&rfr_iscdi=true |