Loading…

Effects on g2/m phase cell cycle distribution and aneuploidy formation of exposure to a 60 Hz electromagnetic field in combination with ionizing radiation or hydrogen peroxide in l132 nontumorigenic human lung epithelial cells

The aim of the present study was to assess whether exposure to the combination of an extremely low frequency magnetic field (ELF-MF; 60 Hz, 1 mT or 2 mT) with a stress factor, such as ionizing radiation (IR) or H2O2, results in genomic instability in non-tumorigenic human lung epithelial L132 cells....

Full description

Saved in:
Bibliographic Details
Published in:The Korean journal of physiology & pharmacology 2015, 19(2), , pp.119-124
Main Authors: Jin, Hee, Yoon, Hye Eun, Lee, Jae-Seon, Kim, Jae-Kyung, Myung, Sung Ho, Lee, Yun-Sil
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The aim of the present study was to assess whether exposure to the combination of an extremely low frequency magnetic field (ELF-MF; 60 Hz, 1 mT or 2 mT) with a stress factor, such as ionizing radiation (IR) or H2O2, results in genomic instability in non-tumorigenic human lung epithelial L132 cells. To this end, the percentages of G2/M-arrested cells and aneuploid cells were examined. Exposure to 0.5 Gy IR or 0.05 mM H2O2 for 9 h resulted in the highest levels of aneuploidy; however, no cells were observed in the subG1 phase, which indicated the absence of apoptotic cell death. Exposure to an ELF-MF alone (1 mT or 2 mT) did not affect the percentages of G2/M-arrested cells, aneuploid cells, or the populations of cells in the subG1 phase. Moreover, when cells were exposed to a 1 mT or 2 mT ELF-MF in combination with IR (0.5 Gy) or H2O2 (0.05 mM), the ELF-MF did not further increase the percentages of G2/M-arrested cells or aneuploid cells. These results suggest that ELF-MFs alone do not induce either G2/M arrest or aneuploidy, even when administered in combination with different stressors.
ISSN:1226-4512
2093-3827
DOI:10.4196/kjpp.2015.19.2.119