Loading…
Comparison of Trophic Modes to Maximize Biomass and Lipid Productivity of Micractinium inermum NLP-F014
An optimum trophic mode condition was investigated to maximize biomass and lipid productivity of Micractinium inermum NLP-F014, which grown successfully in blended wastewater medium. In this study, four trophic modes were used, including photoautotrophic, photoheterotrophic, heterotrophic and mixotr...
Saved in:
Published in: | Biotechnology and bioprocess engineering 2018, 23(2), , pp.238-245 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | An optimum trophic mode condition was investigated to maximize biomass and lipid productivity of
Micractinium inermum
NLP-F014, which grown successfully in blended wastewater medium. In this study, four trophic modes were used, including photoautotrophic, photoheterotrophic, heterotrophic and mixotrophic modes. Mixotrophic mode showed the highest biomass and lipid productivity. However, a high concentration of organics resulted the negative effect on the growth of
M. inermum
NLP-F014. Mixotrophic cultivation using glucose below 500 mg/L was able to produce maximum biomass productivity up to 0.90 ± 0.03 g/L/day as well as maximum lipid productivity up to 129.31 ± 0.10 mg/L/day. From lipid analysis on mixotrophic mode using glucose, the major fatty acids are oleic acid (C18:1), linoleic acid (C18:2) and palmitic acid (C16:0). These results suggest that mixotrophic mode cultivation with wastewater containing chemical oxygen demand (COD) below 500 mg/L could be applicable for biodiesel production of
M. inermum
NLP-F014. |
---|---|
ISSN: | 1226-8372 1976-3816 |
DOI: | 10.1007/s12257-017-0489-1 |