Loading…

Deep-learning-based automatic computer-aided diagnosis system for diabetic retinopathy

The high-pace rise in advanced computing and imaging systems has given rise to a new research dimension called computer-aided diagnosis (CAD) system for various biomedical purposes. CAD-based diabetic retinopathy (DR) can be of paramount significance to enable early disease detection and diagnosis d...

Full description

Saved in:
Bibliographic Details
Published in:Biomedical engineering letters 2018, 8(1), , pp.41-57
Main Author: Mansour, Romany F.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c504t-fb087130539e93b93b15c9dd139377bb31577fdbed151a701fbb673706f9b0093
cites cdi_FETCH-LOGICAL-c504t-fb087130539e93b93b15c9dd139377bb31577fdbed151a701fbb673706f9b0093
container_end_page 57
container_issue 1
container_start_page 41
container_title Biomedical engineering letters
container_volume 8
creator Mansour, Romany F.
description The high-pace rise in advanced computing and imaging systems has given rise to a new research dimension called computer-aided diagnosis (CAD) system for various biomedical purposes. CAD-based diabetic retinopathy (DR) can be of paramount significance to enable early disease detection and diagnosis decision. Considering the robustness of deep neural networks (DNNs) to solve highly intricate classification problems, in this paper, AlexNet DNN, which functions on the basis of convolutional neural network (CNN), has been applied to enable an optimal DR CAD solution. The DR model applies a multilevel optimization measure that incorporates pre-processing, adaptive-learning-based Gaussian mixture model (GMM)-based concept region segmentation, connected component-analysis-based region of interest (ROI) localization, AlexNet DNN-based highly dimensional feature extraction, principle component analysis (PCA)- and linear discriminant analysis (LDA)-based feature selection, and support-vector-machine-based classification to ensure optimal five-class DR classification. The simulation results with standard KAGGLE fundus datasets reveal that the proposed AlexNet DNN-based DR exhibits a better performance with LDA feature selection, where it exhibits a DR classification accuracy of 97.93% with FC7 features, whereas with PCA, it shows 95.26% accuracy. Comparative analysis with spatial invariant feature transform (SIFT) technique (accuracy—94.40%) based DR feature extraction also confirms that AlexNet DNN-based DR outperforms SIFT-based DR.
doi_str_mv 10.1007/s13534-017-0047-y
format article
fullrecord <record><control><sourceid>proquest_nrf_k</sourceid><recordid>TN_cdi_nrf_kci_oai_kci_go_kr_ARTI_3759490</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2163014368</sourcerecordid><originalsourceid>FETCH-LOGICAL-c504t-fb087130539e93b93b15c9dd139377bb31577fdbed151a701fbb673706f9b0093</originalsourceid><addsrcrecordid>eNp1kV1r1jAUx4sobsx9AG_kAW_0InrS0yTNjTDm22AgyBTvQtKmz7K1SU1aod_edJ2PL2AIOSHnd_45yb8onlJ4RQHE60SRYUWACgJQCbI8KI5LkEhkzb49POx5fVScpnQDeTDKJOLj4giBA9JaHhdf31o7kt7q6J3fE6OTbXd6nsKgJ9fsmjCM82Qj0a7NidbpvQ_JpV1a0mSHXRfiemjsCse8-jDq6Xp5UjzqdJ_s6X08Kb68f3d1_pFcfvpwcX52SRoG1UQ6A7WgCAyllWjypKyRbUtRohDGIGVCdK2xLWVUC6CdMVygAN5JA_mBJ8XLTdfHTt02TgXt7uI-qNuozj5fXSgUTFYSMvtmY8fZDLZtrJ-i7tUY3aDjclf5d8a766zzQ_ESasZEFnhxLxDD99mmSQ0uNbbvtbdhTqqkHIFWyOuMPv8HvQlz9PkrVJn75hUKvnZPN6qJIaVou0MzFNRqstpMVtlktZqsllzz7M9XHCp-WZqBcgNSTvm9jb-v_r_qT2xSsr0</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2009643769</pqid></control><display><type>article</type><title>Deep-learning-based automatic computer-aided diagnosis system for diabetic retinopathy</title><source>PMC (PubMed Central)</source><source>Springer Nature</source><creator>Mansour, Romany F.</creator><creatorcontrib>Mansour, Romany F.</creatorcontrib><description>The high-pace rise in advanced computing and imaging systems has given rise to a new research dimension called computer-aided diagnosis (CAD) system for various biomedical purposes. CAD-based diabetic retinopathy (DR) can be of paramount significance to enable early disease detection and diagnosis decision. Considering the robustness of deep neural networks (DNNs) to solve highly intricate classification problems, in this paper, AlexNet DNN, which functions on the basis of convolutional neural network (CNN), has been applied to enable an optimal DR CAD solution. The DR model applies a multilevel optimization measure that incorporates pre-processing, adaptive-learning-based Gaussian mixture model (GMM)-based concept region segmentation, connected component-analysis-based region of interest (ROI) localization, AlexNet DNN-based highly dimensional feature extraction, principle component analysis (PCA)- and linear discriminant analysis (LDA)-based feature selection, and support-vector-machine-based classification to ensure optimal five-class DR classification. The simulation results with standard KAGGLE fundus datasets reveal that the proposed AlexNet DNN-based DR exhibits a better performance with LDA feature selection, where it exhibits a DR classification accuracy of 97.93% with FC7 features, whereas with PCA, it shows 95.26% accuracy. Comparative analysis with spatial invariant feature transform (SIFT) technique (accuracy—94.40%) based DR feature extraction also confirms that AlexNet DNN-based DR outperforms SIFT-based DR.</description><identifier>ISSN: 2093-9868</identifier><identifier>EISSN: 2093-985X</identifier><identifier>DOI: 10.1007/s13534-017-0047-y</identifier><identifier>PMID: 30603189</identifier><language>eng</language><publisher>Korea: The Korean Society of Medical and Biological Engineering</publisher><subject>Accuracy ; Artificial neural networks ; Biological and Medical Physics ; Biomedical Engineering and Bioengineering ; Biomedicine ; Biophysics ; CAI ; Classification ; Comparative analysis ; Computer assisted instruction ; Computer simulation ; Deep learning ; Diabetes ; Diabetes mellitus ; Diabetic retinopathy ; Diagnosis ; Discriminant analysis ; Engineering ; Feature extraction ; Gaussian process ; Image processing ; Image segmentation ; Localization ; Medical and Radiation Physics ; Neural networks ; Original ; Original Article ; Principal components analysis ; Retinopathy ; 의공학</subject><ispartof>Biomedical Engineering Letters (BMEL), 2018, 8(1), , pp.41-57</ispartof><rights>Korean Society of Medical and Biological Engineering and Springer-Verlag GmbH Germany 2017</rights><rights>Copyright Springer Science &amp; Business Media 2018</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c504t-fb087130539e93b93b15c9dd139377bb31577fdbed151a701fbb673706f9b0093</citedby><cites>FETCH-LOGICAL-c504t-fb087130539e93b93b15c9dd139377bb31577fdbed151a701fbb673706f9b0093</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6208557/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6208557/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30603189$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002381736$$DAccess content in National Research Foundation of Korea (NRF)$$Hfree_for_read</backlink></links><search><creatorcontrib>Mansour, Romany F.</creatorcontrib><title>Deep-learning-based automatic computer-aided diagnosis system for diabetic retinopathy</title><title>Biomedical engineering letters</title><addtitle>Biomed. Eng. Lett</addtitle><addtitle>Biomed Eng Lett</addtitle><description>The high-pace rise in advanced computing and imaging systems has given rise to a new research dimension called computer-aided diagnosis (CAD) system for various biomedical purposes. CAD-based diabetic retinopathy (DR) can be of paramount significance to enable early disease detection and diagnosis decision. Considering the robustness of deep neural networks (DNNs) to solve highly intricate classification problems, in this paper, AlexNet DNN, which functions on the basis of convolutional neural network (CNN), has been applied to enable an optimal DR CAD solution. The DR model applies a multilevel optimization measure that incorporates pre-processing, adaptive-learning-based Gaussian mixture model (GMM)-based concept region segmentation, connected component-analysis-based region of interest (ROI) localization, AlexNet DNN-based highly dimensional feature extraction, principle component analysis (PCA)- and linear discriminant analysis (LDA)-based feature selection, and support-vector-machine-based classification to ensure optimal five-class DR classification. The simulation results with standard KAGGLE fundus datasets reveal that the proposed AlexNet DNN-based DR exhibits a better performance with LDA feature selection, where it exhibits a DR classification accuracy of 97.93% with FC7 features, whereas with PCA, it shows 95.26% accuracy. Comparative analysis with spatial invariant feature transform (SIFT) technique (accuracy—94.40%) based DR feature extraction also confirms that AlexNet DNN-based DR outperforms SIFT-based DR.</description><subject>Accuracy</subject><subject>Artificial neural networks</subject><subject>Biological and Medical Physics</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Biomedicine</subject><subject>Biophysics</subject><subject>CAI</subject><subject>Classification</subject><subject>Comparative analysis</subject><subject>Computer assisted instruction</subject><subject>Computer simulation</subject><subject>Deep learning</subject><subject>Diabetes</subject><subject>Diabetes mellitus</subject><subject>Diabetic retinopathy</subject><subject>Diagnosis</subject><subject>Discriminant analysis</subject><subject>Engineering</subject><subject>Feature extraction</subject><subject>Gaussian process</subject><subject>Image processing</subject><subject>Image segmentation</subject><subject>Localization</subject><subject>Medical and Radiation Physics</subject><subject>Neural networks</subject><subject>Original</subject><subject>Original Article</subject><subject>Principal components analysis</subject><subject>Retinopathy</subject><subject>의공학</subject><issn>2093-9868</issn><issn>2093-985X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kV1r1jAUx4sobsx9AG_kAW_0InrS0yTNjTDm22AgyBTvQtKmz7K1SU1aod_edJ2PL2AIOSHnd_45yb8onlJ4RQHE60SRYUWACgJQCbI8KI5LkEhkzb49POx5fVScpnQDeTDKJOLj4giBA9JaHhdf31o7kt7q6J3fE6OTbXd6nsKgJ9fsmjCM82Qj0a7NidbpvQ_JpV1a0mSHXRfiemjsCse8-jDq6Xp5UjzqdJ_s6X08Kb68f3d1_pFcfvpwcX52SRoG1UQ6A7WgCAyllWjypKyRbUtRohDGIGVCdK2xLWVUC6CdMVygAN5JA_mBJ8XLTdfHTt02TgXt7uI-qNuozj5fXSgUTFYSMvtmY8fZDLZtrJ-i7tUY3aDjclf5d8a766zzQ_ESasZEFnhxLxDD99mmSQ0uNbbvtbdhTqqkHIFWyOuMPv8HvQlz9PkrVJn75hUKvnZPN6qJIaVou0MzFNRqstpMVtlktZqsllzz7M9XHCp-WZqBcgNSTvm9jb-v_r_qT2xSsr0</recordid><startdate>20180201</startdate><enddate>20180201</enddate><creator>Mansour, Romany F.</creator><general>The Korean Society of Medical and Biological Engineering</general><general>Springer Nature B.V</general><general>대한의용생체공학회</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>ACYCR</scope></search><sort><creationdate>20180201</creationdate><title>Deep-learning-based automatic computer-aided diagnosis system for diabetic retinopathy</title><author>Mansour, Romany F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c504t-fb087130539e93b93b15c9dd139377bb31577fdbed151a701fbb673706f9b0093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Accuracy</topic><topic>Artificial neural networks</topic><topic>Biological and Medical Physics</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Biomedicine</topic><topic>Biophysics</topic><topic>CAI</topic><topic>Classification</topic><topic>Comparative analysis</topic><topic>Computer assisted instruction</topic><topic>Computer simulation</topic><topic>Deep learning</topic><topic>Diabetes</topic><topic>Diabetes mellitus</topic><topic>Diabetic retinopathy</topic><topic>Diagnosis</topic><topic>Discriminant analysis</topic><topic>Engineering</topic><topic>Feature extraction</topic><topic>Gaussian process</topic><topic>Image processing</topic><topic>Image segmentation</topic><topic>Localization</topic><topic>Medical and Radiation Physics</topic><topic>Neural networks</topic><topic>Original</topic><topic>Original Article</topic><topic>Principal components analysis</topic><topic>Retinopathy</topic><topic>의공학</topic><toplevel>online_resources</toplevel><creatorcontrib>Mansour, Romany F.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Korean Citation Index</collection><jtitle>Biomedical engineering letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mansour, Romany F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep-learning-based automatic computer-aided diagnosis system for diabetic retinopathy</atitle><jtitle>Biomedical engineering letters</jtitle><stitle>Biomed. Eng. Lett</stitle><addtitle>Biomed Eng Lett</addtitle><date>2018-02-01</date><risdate>2018</risdate><volume>8</volume><issue>1</issue><spage>41</spage><epage>57</epage><pages>41-57</pages><issn>2093-9868</issn><eissn>2093-985X</eissn><abstract>The high-pace rise in advanced computing and imaging systems has given rise to a new research dimension called computer-aided diagnosis (CAD) system for various biomedical purposes. CAD-based diabetic retinopathy (DR) can be of paramount significance to enable early disease detection and diagnosis decision. Considering the robustness of deep neural networks (DNNs) to solve highly intricate classification problems, in this paper, AlexNet DNN, which functions on the basis of convolutional neural network (CNN), has been applied to enable an optimal DR CAD solution. The DR model applies a multilevel optimization measure that incorporates pre-processing, adaptive-learning-based Gaussian mixture model (GMM)-based concept region segmentation, connected component-analysis-based region of interest (ROI) localization, AlexNet DNN-based highly dimensional feature extraction, principle component analysis (PCA)- and linear discriminant analysis (LDA)-based feature selection, and support-vector-machine-based classification to ensure optimal five-class DR classification. The simulation results with standard KAGGLE fundus datasets reveal that the proposed AlexNet DNN-based DR exhibits a better performance with LDA feature selection, where it exhibits a DR classification accuracy of 97.93% with FC7 features, whereas with PCA, it shows 95.26% accuracy. Comparative analysis with spatial invariant feature transform (SIFT) technique (accuracy—94.40%) based DR feature extraction also confirms that AlexNet DNN-based DR outperforms SIFT-based DR.</abstract><cop>Korea</cop><pub>The Korean Society of Medical and Biological Engineering</pub><pmid>30603189</pmid><doi>10.1007/s13534-017-0047-y</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2093-9868
ispartof Biomedical Engineering Letters (BMEL), 2018, 8(1), , pp.41-57
issn 2093-9868
2093-985X
language eng
recordid cdi_nrf_kci_oai_kci_go_kr_ARTI_3759490
source PMC (PubMed Central); Springer Nature
subjects Accuracy
Artificial neural networks
Biological and Medical Physics
Biomedical Engineering and Bioengineering
Biomedicine
Biophysics
CAI
Classification
Comparative analysis
Computer assisted instruction
Computer simulation
Deep learning
Diabetes
Diabetes mellitus
Diabetic retinopathy
Diagnosis
Discriminant analysis
Engineering
Feature extraction
Gaussian process
Image processing
Image segmentation
Localization
Medical and Radiation Physics
Neural networks
Original
Original Article
Principal components analysis
Retinopathy
의공학
title Deep-learning-based automatic computer-aided diagnosis system for diabetic retinopathy
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T17%3A31%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_nrf_k&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep-learning-based%20automatic%20computer-aided%20diagnosis%20system%20for%20diabetic%20retinopathy&rft.jtitle=Biomedical%20engineering%20letters&rft.au=Mansour,%20Romany%20F.&rft.date=2018-02-01&rft.volume=8&rft.issue=1&rft.spage=41&rft.epage=57&rft.pages=41-57&rft.issn=2093-9868&rft.eissn=2093-985X&rft_id=info:doi/10.1007/s13534-017-0047-y&rft_dat=%3Cproquest_nrf_k%3E2163014368%3C/proquest_nrf_k%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c504t-fb087130539e93b93b15c9dd139377bb31577fdbed151a701fbb673706f9b0093%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2009643769&rft_id=info:pmid/30603189&rfr_iscdi=true