Loading…
Deep-learning-based automatic computer-aided diagnosis system for diabetic retinopathy
The high-pace rise in advanced computing and imaging systems has given rise to a new research dimension called computer-aided diagnosis (CAD) system for various biomedical purposes. CAD-based diabetic retinopathy (DR) can be of paramount significance to enable early disease detection and diagnosis d...
Saved in:
Published in: | Biomedical engineering letters 2018, 8(1), , pp.41-57 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c504t-fb087130539e93b93b15c9dd139377bb31577fdbed151a701fbb673706f9b0093 |
---|---|
cites | cdi_FETCH-LOGICAL-c504t-fb087130539e93b93b15c9dd139377bb31577fdbed151a701fbb673706f9b0093 |
container_end_page | 57 |
container_issue | 1 |
container_start_page | 41 |
container_title | Biomedical engineering letters |
container_volume | 8 |
creator | Mansour, Romany F. |
description | The high-pace rise in advanced computing and imaging systems has given rise to a new research dimension called computer-aided diagnosis (CAD) system for various biomedical purposes. CAD-based diabetic retinopathy (DR) can be of paramount significance to enable early disease detection and diagnosis decision. Considering the robustness of deep neural networks (DNNs) to solve highly intricate classification problems, in this paper, AlexNet DNN, which functions on the basis of convolutional neural network (CNN), has been applied to enable an optimal DR CAD solution. The DR model applies a multilevel optimization measure that incorporates pre-processing, adaptive-learning-based Gaussian mixture model (GMM)-based concept region segmentation, connected component-analysis-based region of interest (ROI) localization, AlexNet DNN-based highly dimensional feature extraction, principle component analysis (PCA)- and linear discriminant analysis (LDA)-based feature selection, and support-vector-machine-based classification to ensure optimal five-class DR classification. The simulation results with standard KAGGLE fundus datasets reveal that the proposed AlexNet DNN-based DR exhibits a better performance with LDA feature selection, where it exhibits a DR classification accuracy of 97.93% with FC7 features, whereas with PCA, it shows 95.26% accuracy. Comparative analysis with spatial invariant feature transform (SIFT) technique (accuracy—94.40%) based DR feature extraction also confirms that AlexNet DNN-based DR outperforms SIFT-based DR. |
doi_str_mv | 10.1007/s13534-017-0047-y |
format | article |
fullrecord | <record><control><sourceid>proquest_nrf_k</sourceid><recordid>TN_cdi_nrf_kci_oai_kci_go_kr_ARTI_3759490</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2163014368</sourcerecordid><originalsourceid>FETCH-LOGICAL-c504t-fb087130539e93b93b15c9dd139377bb31577fdbed151a701fbb673706f9b0093</originalsourceid><addsrcrecordid>eNp1kV1r1jAUx4sobsx9AG_kAW_0InrS0yTNjTDm22AgyBTvQtKmz7K1SU1aod_edJ2PL2AIOSHnd_45yb8onlJ4RQHE60SRYUWACgJQCbI8KI5LkEhkzb49POx5fVScpnQDeTDKJOLj4giBA9JaHhdf31o7kt7q6J3fE6OTbXd6nsKgJ9fsmjCM82Qj0a7NidbpvQ_JpV1a0mSHXRfiemjsCse8-jDq6Xp5UjzqdJ_s6X08Kb68f3d1_pFcfvpwcX52SRoG1UQ6A7WgCAyllWjypKyRbUtRohDGIGVCdK2xLWVUC6CdMVygAN5JA_mBJ8XLTdfHTt02TgXt7uI-qNuozj5fXSgUTFYSMvtmY8fZDLZtrJ-i7tUY3aDjclf5d8a766zzQ_ESasZEFnhxLxDD99mmSQ0uNbbvtbdhTqqkHIFWyOuMPv8HvQlz9PkrVJn75hUKvnZPN6qJIaVou0MzFNRqstpMVtlktZqsllzz7M9XHCp-WZqBcgNSTvm9jb-v_r_qT2xSsr0</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2009643769</pqid></control><display><type>article</type><title>Deep-learning-based automatic computer-aided diagnosis system for diabetic retinopathy</title><source>PMC (PubMed Central)</source><source>Springer Nature</source><creator>Mansour, Romany F.</creator><creatorcontrib>Mansour, Romany F.</creatorcontrib><description>The high-pace rise in advanced computing and imaging systems has given rise to a new research dimension called computer-aided diagnosis (CAD) system for various biomedical purposes. CAD-based diabetic retinopathy (DR) can be of paramount significance to enable early disease detection and diagnosis decision. Considering the robustness of deep neural networks (DNNs) to solve highly intricate classification problems, in this paper, AlexNet DNN, which functions on the basis of convolutional neural network (CNN), has been applied to enable an optimal DR CAD solution. The DR model applies a multilevel optimization measure that incorporates pre-processing, adaptive-learning-based Gaussian mixture model (GMM)-based concept region segmentation, connected component-analysis-based region of interest (ROI) localization, AlexNet DNN-based highly dimensional feature extraction, principle component analysis (PCA)- and linear discriminant analysis (LDA)-based feature selection, and support-vector-machine-based classification to ensure optimal five-class DR classification. The simulation results with standard KAGGLE fundus datasets reveal that the proposed AlexNet DNN-based DR exhibits a better performance with LDA feature selection, where it exhibits a DR classification accuracy of 97.93% with FC7 features, whereas with PCA, it shows 95.26% accuracy. Comparative analysis with spatial invariant feature transform (SIFT) technique (accuracy—94.40%) based DR feature extraction also confirms that AlexNet DNN-based DR outperforms SIFT-based DR.</description><identifier>ISSN: 2093-9868</identifier><identifier>EISSN: 2093-985X</identifier><identifier>DOI: 10.1007/s13534-017-0047-y</identifier><identifier>PMID: 30603189</identifier><language>eng</language><publisher>Korea: The Korean Society of Medical and Biological Engineering</publisher><subject>Accuracy ; Artificial neural networks ; Biological and Medical Physics ; Biomedical Engineering and Bioengineering ; Biomedicine ; Biophysics ; CAI ; Classification ; Comparative analysis ; Computer assisted instruction ; Computer simulation ; Deep learning ; Diabetes ; Diabetes mellitus ; Diabetic retinopathy ; Diagnosis ; Discriminant analysis ; Engineering ; Feature extraction ; Gaussian process ; Image processing ; Image segmentation ; Localization ; Medical and Radiation Physics ; Neural networks ; Original ; Original Article ; Principal components analysis ; Retinopathy ; 의공학</subject><ispartof>Biomedical Engineering Letters (BMEL), 2018, 8(1), , pp.41-57</ispartof><rights>Korean Society of Medical and Biological Engineering and Springer-Verlag GmbH Germany 2017</rights><rights>Copyright Springer Science & Business Media 2018</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c504t-fb087130539e93b93b15c9dd139377bb31577fdbed151a701fbb673706f9b0093</citedby><cites>FETCH-LOGICAL-c504t-fb087130539e93b93b15c9dd139377bb31577fdbed151a701fbb673706f9b0093</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6208557/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6208557/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30603189$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002381736$$DAccess content in National Research Foundation of Korea (NRF)$$Hfree_for_read</backlink></links><search><creatorcontrib>Mansour, Romany F.</creatorcontrib><title>Deep-learning-based automatic computer-aided diagnosis system for diabetic retinopathy</title><title>Biomedical engineering letters</title><addtitle>Biomed. Eng. Lett</addtitle><addtitle>Biomed Eng Lett</addtitle><description>The high-pace rise in advanced computing and imaging systems has given rise to a new research dimension called computer-aided diagnosis (CAD) system for various biomedical purposes. CAD-based diabetic retinopathy (DR) can be of paramount significance to enable early disease detection and diagnosis decision. Considering the robustness of deep neural networks (DNNs) to solve highly intricate classification problems, in this paper, AlexNet DNN, which functions on the basis of convolutional neural network (CNN), has been applied to enable an optimal DR CAD solution. The DR model applies a multilevel optimization measure that incorporates pre-processing, adaptive-learning-based Gaussian mixture model (GMM)-based concept region segmentation, connected component-analysis-based region of interest (ROI) localization, AlexNet DNN-based highly dimensional feature extraction, principle component analysis (PCA)- and linear discriminant analysis (LDA)-based feature selection, and support-vector-machine-based classification to ensure optimal five-class DR classification. The simulation results with standard KAGGLE fundus datasets reveal that the proposed AlexNet DNN-based DR exhibits a better performance with LDA feature selection, where it exhibits a DR classification accuracy of 97.93% with FC7 features, whereas with PCA, it shows 95.26% accuracy. Comparative analysis with spatial invariant feature transform (SIFT) technique (accuracy—94.40%) based DR feature extraction also confirms that AlexNet DNN-based DR outperforms SIFT-based DR.</description><subject>Accuracy</subject><subject>Artificial neural networks</subject><subject>Biological and Medical Physics</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Biomedicine</subject><subject>Biophysics</subject><subject>CAI</subject><subject>Classification</subject><subject>Comparative analysis</subject><subject>Computer assisted instruction</subject><subject>Computer simulation</subject><subject>Deep learning</subject><subject>Diabetes</subject><subject>Diabetes mellitus</subject><subject>Diabetic retinopathy</subject><subject>Diagnosis</subject><subject>Discriminant analysis</subject><subject>Engineering</subject><subject>Feature extraction</subject><subject>Gaussian process</subject><subject>Image processing</subject><subject>Image segmentation</subject><subject>Localization</subject><subject>Medical and Radiation Physics</subject><subject>Neural networks</subject><subject>Original</subject><subject>Original Article</subject><subject>Principal components analysis</subject><subject>Retinopathy</subject><subject>의공학</subject><issn>2093-9868</issn><issn>2093-985X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kV1r1jAUx4sobsx9AG_kAW_0InrS0yTNjTDm22AgyBTvQtKmz7K1SU1aod_edJ2PL2AIOSHnd_45yb8onlJ4RQHE60SRYUWACgJQCbI8KI5LkEhkzb49POx5fVScpnQDeTDKJOLj4giBA9JaHhdf31o7kt7q6J3fE6OTbXd6nsKgJ9fsmjCM82Qj0a7NidbpvQ_JpV1a0mSHXRfiemjsCse8-jDq6Xp5UjzqdJ_s6X08Kb68f3d1_pFcfvpwcX52SRoG1UQ6A7WgCAyllWjypKyRbUtRohDGIGVCdK2xLWVUC6CdMVygAN5JA_mBJ8XLTdfHTt02TgXt7uI-qNuozj5fXSgUTFYSMvtmY8fZDLZtrJ-i7tUY3aDjclf5d8a766zzQ_ESasZEFnhxLxDD99mmSQ0uNbbvtbdhTqqkHIFWyOuMPv8HvQlz9PkrVJn75hUKvnZPN6qJIaVou0MzFNRqstpMVtlktZqsllzz7M9XHCp-WZqBcgNSTvm9jb-v_r_qT2xSsr0</recordid><startdate>20180201</startdate><enddate>20180201</enddate><creator>Mansour, Romany F.</creator><general>The Korean Society of Medical and Biological Engineering</general><general>Springer Nature B.V</general><general>대한의용생체공학회</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>ACYCR</scope></search><sort><creationdate>20180201</creationdate><title>Deep-learning-based automatic computer-aided diagnosis system for diabetic retinopathy</title><author>Mansour, Romany F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c504t-fb087130539e93b93b15c9dd139377bb31577fdbed151a701fbb673706f9b0093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Accuracy</topic><topic>Artificial neural networks</topic><topic>Biological and Medical Physics</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Biomedicine</topic><topic>Biophysics</topic><topic>CAI</topic><topic>Classification</topic><topic>Comparative analysis</topic><topic>Computer assisted instruction</topic><topic>Computer simulation</topic><topic>Deep learning</topic><topic>Diabetes</topic><topic>Diabetes mellitus</topic><topic>Diabetic retinopathy</topic><topic>Diagnosis</topic><topic>Discriminant analysis</topic><topic>Engineering</topic><topic>Feature extraction</topic><topic>Gaussian process</topic><topic>Image processing</topic><topic>Image segmentation</topic><topic>Localization</topic><topic>Medical and Radiation Physics</topic><topic>Neural networks</topic><topic>Original</topic><topic>Original Article</topic><topic>Principal components analysis</topic><topic>Retinopathy</topic><topic>의공학</topic><toplevel>online_resources</toplevel><creatorcontrib>Mansour, Romany F.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Korean Citation Index</collection><jtitle>Biomedical engineering letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mansour, Romany F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep-learning-based automatic computer-aided diagnosis system for diabetic retinopathy</atitle><jtitle>Biomedical engineering letters</jtitle><stitle>Biomed. Eng. Lett</stitle><addtitle>Biomed Eng Lett</addtitle><date>2018-02-01</date><risdate>2018</risdate><volume>8</volume><issue>1</issue><spage>41</spage><epage>57</epage><pages>41-57</pages><issn>2093-9868</issn><eissn>2093-985X</eissn><abstract>The high-pace rise in advanced computing and imaging systems has given rise to a new research dimension called computer-aided diagnosis (CAD) system for various biomedical purposes. CAD-based diabetic retinopathy (DR) can be of paramount significance to enable early disease detection and diagnosis decision. Considering the robustness of deep neural networks (DNNs) to solve highly intricate classification problems, in this paper, AlexNet DNN, which functions on the basis of convolutional neural network (CNN), has been applied to enable an optimal DR CAD solution. The DR model applies a multilevel optimization measure that incorporates pre-processing, adaptive-learning-based Gaussian mixture model (GMM)-based concept region segmentation, connected component-analysis-based region of interest (ROI) localization, AlexNet DNN-based highly dimensional feature extraction, principle component analysis (PCA)- and linear discriminant analysis (LDA)-based feature selection, and support-vector-machine-based classification to ensure optimal five-class DR classification. The simulation results with standard KAGGLE fundus datasets reveal that the proposed AlexNet DNN-based DR exhibits a better performance with LDA feature selection, where it exhibits a DR classification accuracy of 97.93% with FC7 features, whereas with PCA, it shows 95.26% accuracy. Comparative analysis with spatial invariant feature transform (SIFT) technique (accuracy—94.40%) based DR feature extraction also confirms that AlexNet DNN-based DR outperforms SIFT-based DR.</abstract><cop>Korea</cop><pub>The Korean Society of Medical and Biological Engineering</pub><pmid>30603189</pmid><doi>10.1007/s13534-017-0047-y</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2093-9868 |
ispartof | Biomedical Engineering Letters (BMEL), 2018, 8(1), , pp.41-57 |
issn | 2093-9868 2093-985X |
language | eng |
recordid | cdi_nrf_kci_oai_kci_go_kr_ARTI_3759490 |
source | PMC (PubMed Central); Springer Nature |
subjects | Accuracy Artificial neural networks Biological and Medical Physics Biomedical Engineering and Bioengineering Biomedicine Biophysics CAI Classification Comparative analysis Computer assisted instruction Computer simulation Deep learning Diabetes Diabetes mellitus Diabetic retinopathy Diagnosis Discriminant analysis Engineering Feature extraction Gaussian process Image processing Image segmentation Localization Medical and Radiation Physics Neural networks Original Original Article Principal components analysis Retinopathy 의공학 |
title | Deep-learning-based automatic computer-aided diagnosis system for diabetic retinopathy |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T17%3A31%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_nrf_k&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep-learning-based%20automatic%20computer-aided%20diagnosis%20system%20for%20diabetic%20retinopathy&rft.jtitle=Biomedical%20engineering%20letters&rft.au=Mansour,%20Romany%20F.&rft.date=2018-02-01&rft.volume=8&rft.issue=1&rft.spage=41&rft.epage=57&rft.pages=41-57&rft.issn=2093-9868&rft.eissn=2093-985X&rft_id=info:doi/10.1007/s13534-017-0047-y&rft_dat=%3Cproquest_nrf_k%3E2163014368%3C/proquest_nrf_k%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c504t-fb087130539e93b93b15c9dd139377bb31577fdbed151a701fbb673706f9b0093%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2009643769&rft_id=info:pmid/30603189&rfr_iscdi=true |