Loading…

Submonolayer Quantum Dots for Optoelectronic Devices

Semiconductor quantum dots (QD) have been extensively applied in optical and optoelectronic devices because of their strong quantum confinement and bandgap tunability. Most research has focused on the design, material growth, and characterization of self-assembled QDs grown by Stranski- Krastanov (S...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the Korean Physical Society 2018, 73(6), , pp.833-840
Main Authors: Kim, Yeongho, Kim, Jun Oh, Lee, Sang Jun, Noh, Sam Kyu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Semiconductor quantum dots (QD) have been extensively applied in optical and optoelectronic devices because of their strong quantum confinement and bandgap tunability. Most research has focused on the design, material growth, and characterization of self-assembled QDs grown by Stranski- Krastanov (S-K) growth mode. As an alternative to S-K QDs, sub-monolayer (SML) QDs have recently attracted much attention due to their ultrahigh dot density, excellent size uniformity, and high crystal quality. These better material properties of SML QDs promise great application potential in optoelectronic devices such as infrared photodetectors and solar cells. In this review, we present and discuss the material and device characteristics of the infrared photodetectors and solar cells with InAs QDs grown by S-K and SML growth modes.
ISSN:0374-4884
1976-8524
DOI:10.3938/jkps.73.833