Loading…
Determination of a Monitoring Scheme for Controlling Construction Errors of a Cable-strut Tensile Structure
Construction errors are inevitable in real cable-strut tensile structures. Nevertheless, the relevant work, especially the monitoring scheme design work, to control the construction errors is lacking. At present, the monitoring schemes always lay out the monitored members in the places with great in...
Saved in:
Published in: | KSCE journal of civil engineering 2018, 22(10), , pp.4030-4037 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Construction errors are inevitable in real cable-strut tensile structures. Nevertheless, the relevant work, especially the monitoring scheme design work, to control the construction errors is lacking. At present, the monitoring schemes always lay out the monitored members in the places with great internal force or great deformation, do not consider the method to control the construction errors and do not explain the method to lay out the monitored members in fundamental theory. To address this situation, the element length error, which is an important construction error affecting the bearing performance, is considered as the factor variable and the fundamental equation of pre-stress deviation and element length error is derived firstly. Next the methods to express the pre-stress deviation, which are only derived from the active cable length errors or from both the active cable and passive cable length errors, are discussed. After that, based on the condition that the errors can be solved and compensated, the least number of monitored members is determined. Moreover, those members sensitive to cable length deviation of active cables are selected as monitored members. In order to evaluate the effect level caused by passive cable length deviation, two evaluation parameters Δ and ρ are further discussed. Finally, one cable-strut tensile structure example is employed to verify the proposed method and the results of the example studies indicate that the least necessary number of monitored members can be achieved for the accurate solution and compensation of active cable length deviations. Different members have different sensitivities to the change of the length in active cables and those members with great sensitivities can be chosen in prior as monitored members. The evaluation parameters Δ and ρ can be used to analyze the source of errors and to evaluate the error effect level caused by the passive cable length deviation. |
---|---|
ISSN: | 1226-7988 1976-3808 |
DOI: | 10.1007/s12205-018-1583-4 |