Loading…
Synthesis of (R,R)-2,3-butanediol from starch in a hybrid cell-free reaction system
In this study, we demonstrate the conversion of starch to (R,R)-2,3-butanediol (2,3-BD) in a hybrid cell-free synthesis system containing a mixture of lysates derived from Escherichia coli (E. coli) and cyanobacteria. A sufficient pool of pyruvate required for the synthesis of 2,3-BD was generated b...
Saved in:
Published in: | Journal of industrial and engineering chemistry (Seoul, Korea) 2018, 67(0), , pp.231-235 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this study, we demonstrate the conversion of starch to (R,R)-2,3-butanediol (2,3-BD) in a hybrid cell-free synthesis system containing a mixture of lysates derived from Escherichia coli (E. coli) and cyanobacteria. A sufficient pool of pyruvate required for the synthesis of 2,3-BD was generated by combining metabolic pathways of cyanobacteria and E. coli. Successful synthesis of 2,3-BD was achieved by additional modifications of the hybrid cell-free system with the enzymes required to convert pyruvate to 2,3-BD. The results demonstrate a new approach to harness biological pathways to expand the scope of cell-free metabolic engineering by cross-species combinations of cell lysates. KCI Citation Count: 7 |
---|---|
ISSN: | 1226-086X 1876-794X |
DOI: | 10.1016/j.jiec.2018.06.033 |