Loading…
Development of probabilistic pedestrian fatality model for characterizing pedestrian-vehicle collisions
Pedestrian-related accidents are considered to be the most serious of traffic accidents due to the associated high fatality rates. In Korea, pedestrian fatalities accounted for approximately 40% of all traffic-related fatalities in 2004. Significant efforts have been made to develop effective counte...
Saved in:
Published in: | International journal of automotive technology 2008, 9(2), , pp.191-196 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c379t-9125fa48f333706107791f67147bd5cb1828f33d272aff0eb0f06daa26d82fc13 |
---|---|
cites | cdi_FETCH-LOGICAL-c379t-9125fa48f333706107791f67147bd5cb1828f33d272aff0eb0f06daa26d82fc13 |
container_end_page | 196 |
container_issue | 2 |
container_start_page | 191 |
container_title | International journal of automotive technology |
container_volume | 9 |
creator | Oh, C. Kang, Y. S. Youn, Y. Konosu, A. |
description | Pedestrian-related accidents are considered to be the most serious of traffic accidents due to the associated high fatality rates. In Korea, pedestrian fatalities accounted for approximately 40% of all traffic-related fatalities in 2004. Significant efforts have been made to develop effective countermeasures for pedestrian-vehicle collisions. A basis for devising such countermeasures is to understand the characteristics of pedestrian-vehicle collisions. This study develops a pedestrian fatality model capable of predicting the probability of fatality in pedestrian-vehicle collisions. Binary logistic regression and a probabilistic neural network (PNN) are employed to estimate the probability of pedestrian fatality. Pedestrian age, vehicle type and collision speed are used as independent variables of the fatality model. The models developed herein are valuable tools that can be used to direct safety policies and technologies associated with pedestrian safety. |
doi_str_mv | 10.1007/s12239-008-0024-7 |
format | article |
fullrecord | <record><control><sourceid>proquest_nrf_k</sourceid><recordid>TN_cdi_nrf_kci_oai_kci_go_kr_ARTI_388186</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1896152851</sourcerecordid><originalsourceid>FETCH-LOGICAL-c379t-9125fa48f333706107791f67147bd5cb1828f33d272aff0eb0f06daa26d82fc13</originalsourceid><addsrcrecordid>eNp1kV1LwzAUhosoOKc_wLvihXhTzUebpJdjfg0GgszrkKZJly1rZtIN5q83tYIieBFO4DzvyznnTZJLCG4hAPQuQIRwmQHA4kN5Ro-SESwpyTDD6Dj-ESqzEmJ2mpyFsAKgIBCDUdLcq72ybrtRbZc6nW69q0RlrAmdkelW1Sp03og21aIT1nSHdONqZVPtfCqXwgvZKW8-TNv8grO9WhppVSqdjU7GteE8OdHCBnXxXcfJ2-PDYvqczV-eZtPJPJOYll2cEBVa5ExjjCkgEFBaQk0ozGlVF7KCDPW9GlEktAaqAhqQWghEaoa0hHic3Ay-rdd8LQ13wnzVxvG155PXxYxjxiAjEb0e0Ljz-y6OzjcmSGWtaJXbBY4JziEEKIJXf8CV2_k2rsHjVQkDRU4jBAdIeheCV5pvvdkIf-AQ8D4iPkTEY0S8j4j3GjRoQmTbRvkf4_9Fn9HIlMs</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>229680547</pqid></control><display><type>article</type><title>Development of probabilistic pedestrian fatality model for characterizing pedestrian-vehicle collisions</title><source>ABI/INFORM Global</source><source>Springer Nature</source><creator>Oh, C. ; Kang, Y. S. ; Youn, Y. ; Konosu, A.</creator><creatorcontrib>Oh, C. ; Kang, Y. S. ; Youn, Y. ; Konosu, A.</creatorcontrib><description>Pedestrian-related accidents are considered to be the most serious of traffic accidents due to the associated high fatality rates. In Korea, pedestrian fatalities accounted for approximately 40% of all traffic-related fatalities in 2004. Significant efforts have been made to develop effective countermeasures for pedestrian-vehicle collisions. A basis for devising such countermeasures is to understand the characteristics of pedestrian-vehicle collisions. This study develops a pedestrian fatality model capable of predicting the probability of fatality in pedestrian-vehicle collisions. Binary logistic regression and a probabilistic neural network (PNN) are employed to estimate the probability of pedestrian fatality. Pedestrian age, vehicle type and collision speed are used as independent variables of the fatality model. The models developed herein are valuable tools that can be used to direct safety policies and technologies associated with pedestrian safety.</description><identifier>ISSN: 1229-9138</identifier><identifier>EISSN: 1976-3832</identifier><identifier>DOI: 10.1007/s12239-008-0024-7</identifier><language>eng</language><publisher>Heidelberg: The Korean Society of Automotive Engineers</publisher><subject>Automobile safety ; Automotive Engineering ; Dependent variables ; Engineering ; Fatalities ; Independent variables ; Neural networks ; Pedestrians ; Regression analysis ; Studies ; Traffic accidents & safety ; Variables ; 자동차공학</subject><ispartof>International Journal of Automotive Technology, 2008, 9(2), , pp.191-196</ispartof><rights>Springer 2008</rights><rights>2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c379t-9125fa48f333706107791f67147bd5cb1828f33d272aff0eb0f06daa26d82fc13</citedby><cites>FETCH-LOGICAL-c379t-9125fa48f333706107791f67147bd5cb1828f33d272aff0eb0f06daa26d82fc13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/229680547/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/229680547?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11688,27924,27925,36060,36061,44363,74767</link.rule.ids><backlink>$$Uhttps://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART001237095$$DAccess content in National Research Foundation of Korea (NRF)$$Hfree_for_read</backlink></links><search><creatorcontrib>Oh, C.</creatorcontrib><creatorcontrib>Kang, Y. S.</creatorcontrib><creatorcontrib>Youn, Y.</creatorcontrib><creatorcontrib>Konosu, A.</creatorcontrib><title>Development of probabilistic pedestrian fatality model for characterizing pedestrian-vehicle collisions</title><title>International journal of automotive technology</title><addtitle>Int.J Automot. Technol</addtitle><description>Pedestrian-related accidents are considered to be the most serious of traffic accidents due to the associated high fatality rates. In Korea, pedestrian fatalities accounted for approximately 40% of all traffic-related fatalities in 2004. Significant efforts have been made to develop effective countermeasures for pedestrian-vehicle collisions. A basis for devising such countermeasures is to understand the characteristics of pedestrian-vehicle collisions. This study develops a pedestrian fatality model capable of predicting the probability of fatality in pedestrian-vehicle collisions. Binary logistic regression and a probabilistic neural network (PNN) are employed to estimate the probability of pedestrian fatality. Pedestrian age, vehicle type and collision speed are used as independent variables of the fatality model. The models developed herein are valuable tools that can be used to direct safety policies and technologies associated with pedestrian safety.</description><subject>Automobile safety</subject><subject>Automotive Engineering</subject><subject>Dependent variables</subject><subject>Engineering</subject><subject>Fatalities</subject><subject>Independent variables</subject><subject>Neural networks</subject><subject>Pedestrians</subject><subject>Regression analysis</subject><subject>Studies</subject><subject>Traffic accidents & safety</subject><subject>Variables</subject><subject>자동차공학</subject><issn>1229-9138</issn><issn>1976-3832</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp1kV1LwzAUhosoOKc_wLvihXhTzUebpJdjfg0GgszrkKZJly1rZtIN5q83tYIieBFO4DzvyznnTZJLCG4hAPQuQIRwmQHA4kN5Ro-SESwpyTDD6Dj-ESqzEmJ2mpyFsAKgIBCDUdLcq72ybrtRbZc6nW69q0RlrAmdkelW1Sp03og21aIT1nSHdONqZVPtfCqXwgvZKW8-TNv8grO9WhppVSqdjU7GteE8OdHCBnXxXcfJ2-PDYvqczV-eZtPJPJOYll2cEBVa5ExjjCkgEFBaQk0ozGlVF7KCDPW9GlEktAaqAhqQWghEaoa0hHic3Ay-rdd8LQ13wnzVxvG155PXxYxjxiAjEb0e0Ljz-y6OzjcmSGWtaJXbBY4JziEEKIJXf8CV2_k2rsHjVQkDRU4jBAdIeheCV5pvvdkIf-AQ8D4iPkTEY0S8j4j3GjRoQmTbRvkf4_9Fn9HIlMs</recordid><startdate>20080401</startdate><enddate>20080401</enddate><creator>Oh, C.</creator><creator>Kang, Y. S.</creator><creator>Youn, Y.</creator><creator>Konosu, A.</creator><general>The Korean Society of Automotive Engineers</general><general>Springer Nature B.V</general><general>한국자동차공학회</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>KB.</scope><scope>L.-</scope><scope>L.0</scope><scope>M0C</scope><scope>M2P</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>ACYCR</scope></search><sort><creationdate>20080401</creationdate><title>Development of probabilistic pedestrian fatality model for characterizing pedestrian-vehicle collisions</title><author>Oh, C. ; Kang, Y. S. ; Youn, Y. ; Konosu, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c379t-9125fa48f333706107791f67147bd5cb1828f33d272aff0eb0f06daa26d82fc13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Automobile safety</topic><topic>Automotive Engineering</topic><topic>Dependent variables</topic><topic>Engineering</topic><topic>Fatalities</topic><topic>Independent variables</topic><topic>Neural networks</topic><topic>Pedestrians</topic><topic>Regression analysis</topic><topic>Studies</topic><topic>Traffic accidents & safety</topic><topic>Variables</topic><topic>자동차공학</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Oh, C.</creatorcontrib><creatorcontrib>Kang, Y. S.</creatorcontrib><creatorcontrib>Youn, Y.</creatorcontrib><creatorcontrib>Konosu, A.</creatorcontrib><collection>CrossRef</collection><collection>Global News & ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>https://resources.nclive.org/materials</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ABI/INFORM Global</collection><collection>ProQuest Science Database</collection><collection>Materials Science Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Korean Citation Index</collection><jtitle>International journal of automotive technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Oh, C.</au><au>Kang, Y. S.</au><au>Youn, Y.</au><au>Konosu, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of probabilistic pedestrian fatality model for characterizing pedestrian-vehicle collisions</atitle><jtitle>International journal of automotive technology</jtitle><stitle>Int.J Automot. Technol</stitle><date>2008-04-01</date><risdate>2008</risdate><volume>9</volume><issue>2</issue><spage>191</spage><epage>196</epage><pages>191-196</pages><issn>1229-9138</issn><eissn>1976-3832</eissn><abstract>Pedestrian-related accidents are considered to be the most serious of traffic accidents due to the associated high fatality rates. In Korea, pedestrian fatalities accounted for approximately 40% of all traffic-related fatalities in 2004. Significant efforts have been made to develop effective countermeasures for pedestrian-vehicle collisions. A basis for devising such countermeasures is to understand the characteristics of pedestrian-vehicle collisions. This study develops a pedestrian fatality model capable of predicting the probability of fatality in pedestrian-vehicle collisions. Binary logistic regression and a probabilistic neural network (PNN) are employed to estimate the probability of pedestrian fatality. Pedestrian age, vehicle type and collision speed are used as independent variables of the fatality model. The models developed herein are valuable tools that can be used to direct safety policies and technologies associated with pedestrian safety.</abstract><cop>Heidelberg</cop><pub>The Korean Society of Automotive Engineers</pub><doi>10.1007/s12239-008-0024-7</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1229-9138 |
ispartof | International Journal of Automotive Technology, 2008, 9(2), , pp.191-196 |
issn | 1229-9138 1976-3832 |
language | eng |
recordid | cdi_nrf_kci_oai_kci_go_kr_ARTI_388186 |
source | ABI/INFORM Global; Springer Nature |
subjects | Automobile safety Automotive Engineering Dependent variables Engineering Fatalities Independent variables Neural networks Pedestrians Regression analysis Studies Traffic accidents & safety Variables 자동차공학 |
title | Development of probabilistic pedestrian fatality model for characterizing pedestrian-vehicle collisions |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T01%3A48%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_nrf_k&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20probabilistic%20pedestrian%20fatality%20model%20for%20characterizing%20pedestrian-vehicle%20collisions&rft.jtitle=International%20journal%20of%20automotive%20technology&rft.au=Oh,%20C.&rft.date=2008-04-01&rft.volume=9&rft.issue=2&rft.spage=191&rft.epage=196&rft.pages=191-196&rft.issn=1229-9138&rft.eissn=1976-3832&rft_id=info:doi/10.1007/s12239-008-0024-7&rft_dat=%3Cproquest_nrf_k%3E1896152851%3C/proquest_nrf_k%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c379t-9125fa48f333706107791f67147bd5cb1828f33d272aff0eb0f06daa26d82fc13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=229680547&rft_id=info:pmid/&rfr_iscdi=true |