Loading…

Drying Shrinkage and Suppression Technology of HPC in Extremely Arid Area

Supplementary materials Such As Slag (SG), Fly Ash (FA) and Silica Fume (SF) are necessary for reducing the drying shrinkage of High-performance Concrete (HPC) in arid environments and extremely arid area. This paper investigates the drying shrinkage of HPC with the composites of 10% Silica Fume (SF...

Full description

Saved in:
Bibliographic Details
Published in:KSCE journal of civil engineering 2019, 23(1), , pp.180-190
Main Authors: Yu, Hongfa, Zeng, Xiangchao
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Supplementary materials Such As Slag (SG), Fly Ash (FA) and Silica Fume (SF) are necessary for reducing the drying shrinkage of High-performance Concrete (HPC) in arid environments and extremely arid area. This paper investigates the drying shrinkage of HPC with the composites of 10% Silica Fume (SF) and 20% Fly Ash (FA) additions and another HPC incorporated with 10% SF?20% FA and 20% slag (SG), which were exposed to the conditions of 30% Relative Humidity (RH) and 50% RH. The inhibitive mechanism of Aluminate Expansion Agent (AEA) on the drying shrinkage of HPC reveals that the dry shrinkage can be inhibited by the expansion agent as long as the high density of concrete structure and the internal “surplus water” can be ensured. Furthermore, the additions of the composites of SF, FA and SG, super-plasticizer, high modulus fiber (PF) and AEA, can reduce the drying shrinkage and improve the moisture sensitivity of shrinkage of the concrete. The drying shrinkage rate of HPC in extremely harsh environment decreased to about 300 × 10 −6 and no shrinkage cracks appeared on the surface of the HPC incorporated with SF, FA and SG. The perfect combination of high volume stability and high durability of HPC was realized.
ISSN:1226-7988
1976-3808
DOI:10.1007/s12205-017-0626-6