Loading…

Investigation on the Controlled Degradation and Invitro Mineralization of Carbon Nanotube Reinforced AZ31 Nanocomposite in Simulated Body Fluid

Magnesium (Mg) based implant materials are believed to be the perfect candidates for biomedical applications due to their versatile properties. However, regulating their corrosion/degradation rate in the biological surroundings is still a noteworthy task. Suitable strategies to overcome this task is...

Full description

Saved in:
Bibliographic Details
Published in:Metals and materials international 2019, 25(1), , pp.105-116
Main Authors: Kumar, A. Madhan, Hassan, S. Fida, Sorour, Ahmad A., Paramsothy, M., Gupta, M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c350t-42069951a0822bf2d660c2fc51578477f0912be2ef8c22b4ca82cf022d0c1db03
cites cdi_FETCH-LOGICAL-c350t-42069951a0822bf2d660c2fc51578477f0912be2ef8c22b4ca82cf022d0c1db03
container_end_page 116
container_issue 1
container_start_page 105
container_title Metals and materials international
container_volume 25
creator Kumar, A. Madhan
Hassan, S. Fida
Sorour, Ahmad A.
Paramsothy, M.
Gupta, M.
description Magnesium (Mg) based implant materials are believed to be the perfect candidates for biomedical applications due to their versatile properties. However, regulating their corrosion/degradation rate in the biological surroundings is still a noteworthy task. Suitable strategies to overcome this task is to wisely select alloy elements with improved corrosion resistance and mechanical characteristics. An attempt has been made to enhance the corrosion and biocompatibility performance of magnesium alloy AZ31 containing carbon nanotubes (CNTs) as reinforcement and evaluate its degradation and invitro mineralization performance in physiological medium. Corrosion behavior of AZ31 alloy with CNTs reinforcement was investigated using electrochemical methods, weight loss, and hydrogen evolution in SBF during short and long-term periods. The obtained results revealed that the corrosion resistance of AZ31 alloy enhanced significantly due to the incorporation of CNTs. Hydrogen evolution test and weight loss tests revealed that the presence of CNTs improves the stability of the Mg(OH) 2 and efficiently regulate the degradation behavior in SBF. Surface characterization after immersion in SBF revealed the rapid formation of bone-like apatite layer on the surface, validated a good bioactivity of the AZ31 nanocomposite samples.
doi_str_mv 10.1007/s12540-018-0161-0
format article
fullrecord <record><control><sourceid>proquest_nrf_k</sourceid><recordid>TN_cdi_nrf_kci_oai_kci_go_kr_ARTI_3955113</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2063531572</sourcerecordid><originalsourceid>FETCH-LOGICAL-c350t-42069951a0822bf2d660c2fc51578477f0912be2ef8c22b4ca82cf022d0c1db03</originalsourceid><addsrcrecordid>eNp1kc9q3DAQxkVJoJs_D9CboKcenMxIltc-brfZZCFtIEkvvQhZlrZKvNJWsgvJS-SVo40DPRUkRvD95ptBHyGfEM4QYH6ekIkSCsA63woL-EBmDEAUJZbNAZmhaOqiqRj_SI5SegCokCObkZe1_2vS4DZqcMHTfIbfhi6DH2Loe9PRb2YTVTepync08y5r9LvzJqrePb83WrpUsc2vH8qHYWwNvTXO2xB1Nln84vgm6LDdheQGQ52nd2479mrI-tfQPdFVP7ruhBxa1Sdz-l6Pyc_Vxf3yqri-uVwvF9eF5gKGomRQNY1ABTVjrWVdVYFmVgsU87qczy00yFrDjK11BkqtaqYtMNaBxq4Ffky-TL4-WvmonQzKvdVNkI9RLm7v15I3QiDyzH6e2F0Mf8b8W_IhjNHn9WRegwueh7JM4UTpGFKKxspddFsVnySC3Gckp4xkzkjuM5L7LdjUkzLrNyb-c_5_0yuzlJR3</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2063531572</pqid></control><display><type>article</type><title>Investigation on the Controlled Degradation and Invitro Mineralization of Carbon Nanotube Reinforced AZ31 Nanocomposite in Simulated Body Fluid</title><source>Springer Nature</source><creator>Kumar, A. Madhan ; Hassan, S. Fida ; Sorour, Ahmad A. ; Paramsothy, M. ; Gupta, M.</creator><creatorcontrib>Kumar, A. Madhan ; Hassan, S. Fida ; Sorour, Ahmad A. ; Paramsothy, M. ; Gupta, M.</creatorcontrib><description>Magnesium (Mg) based implant materials are believed to be the perfect candidates for biomedical applications due to their versatile properties. However, regulating their corrosion/degradation rate in the biological surroundings is still a noteworthy task. Suitable strategies to overcome this task is to wisely select alloy elements with improved corrosion resistance and mechanical characteristics. An attempt has been made to enhance the corrosion and biocompatibility performance of magnesium alloy AZ31 containing carbon nanotubes (CNTs) as reinforcement and evaluate its degradation and invitro mineralization performance in physiological medium. Corrosion behavior of AZ31 alloy with CNTs reinforcement was investigated using electrochemical methods, weight loss, and hydrogen evolution in SBF during short and long-term periods. The obtained results revealed that the corrosion resistance of AZ31 alloy enhanced significantly due to the incorporation of CNTs. Hydrogen evolution test and weight loss tests revealed that the presence of CNTs improves the stability of the Mg(OH) 2 and efficiently regulate the degradation behavior in SBF. Surface characterization after immersion in SBF revealed the rapid formation of bone-like apatite layer on the surface, validated a good bioactivity of the AZ31 nanocomposite samples.</description><identifier>ISSN: 1598-9623</identifier><identifier>EISSN: 2005-4149</identifier><identifier>DOI: 10.1007/s12540-018-0161-0</identifier><language>eng</language><publisher>Seoul: The Korean Institute of Metals and Materials</publisher><subject>Alloying elements ; Apatite ; Bacterial corrosion ; Biocompatibility ; Biomedical materials ; Body fluids ; Carbon nanotubes ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Corrosion rate ; Corrosion resistance ; Corrosion resistant alloys ; Degradation ; Engineering Thermodynamics ; Heat and Mass Transfer ; Hydrogen evolution ; In vitro methods and tests ; Machines ; Magnesium base alloys ; Magnetic Materials ; Magnetism ; Manufacturing ; Materials Science ; Mechanical properties ; Metallic Materials ; Mineralization ; Nanocomposites ; Nanotubes ; Processes ; Solid Mechanics ; Surface properties ; Surgical implants ; Weight loss ; 재료공학</subject><ispartof>Metals and Materials International, 2019, 25(1), , pp.105-116</ispartof><rights>The Korean Institute of Metals and Materials 2018</rights><rights>Metals and Materials International is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c350t-42069951a0822bf2d660c2fc51578477f0912be2ef8c22b4ca82cf022d0c1db03</citedby><cites>FETCH-LOGICAL-c350t-42069951a0822bf2d660c2fc51578477f0912be2ef8c22b4ca82cf022d0c1db03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27900,27901</link.rule.ids><backlink>$$Uhttps://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002426545$$DAccess content in National Research Foundation of Korea (NRF)$$Hfree_for_read</backlink></links><search><creatorcontrib>Kumar, A. Madhan</creatorcontrib><creatorcontrib>Hassan, S. Fida</creatorcontrib><creatorcontrib>Sorour, Ahmad A.</creatorcontrib><creatorcontrib>Paramsothy, M.</creatorcontrib><creatorcontrib>Gupta, M.</creatorcontrib><title>Investigation on the Controlled Degradation and Invitro Mineralization of Carbon Nanotube Reinforced AZ31 Nanocomposite in Simulated Body Fluid</title><title>Metals and materials international</title><addtitle>Met. Mater. Int</addtitle><description>Magnesium (Mg) based implant materials are believed to be the perfect candidates for biomedical applications due to their versatile properties. However, regulating their corrosion/degradation rate in the biological surroundings is still a noteworthy task. Suitable strategies to overcome this task is to wisely select alloy elements with improved corrosion resistance and mechanical characteristics. An attempt has been made to enhance the corrosion and biocompatibility performance of magnesium alloy AZ31 containing carbon nanotubes (CNTs) as reinforcement and evaluate its degradation and invitro mineralization performance in physiological medium. Corrosion behavior of AZ31 alloy with CNTs reinforcement was investigated using electrochemical methods, weight loss, and hydrogen evolution in SBF during short and long-term periods. The obtained results revealed that the corrosion resistance of AZ31 alloy enhanced significantly due to the incorporation of CNTs. Hydrogen evolution test and weight loss tests revealed that the presence of CNTs improves the stability of the Mg(OH) 2 and efficiently regulate the degradation behavior in SBF. Surface characterization after immersion in SBF revealed the rapid formation of bone-like apatite layer on the surface, validated a good bioactivity of the AZ31 nanocomposite samples.</description><subject>Alloying elements</subject><subject>Apatite</subject><subject>Bacterial corrosion</subject><subject>Biocompatibility</subject><subject>Biomedical materials</subject><subject>Body fluids</subject><subject>Carbon nanotubes</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Corrosion rate</subject><subject>Corrosion resistance</subject><subject>Corrosion resistant alloys</subject><subject>Degradation</subject><subject>Engineering Thermodynamics</subject><subject>Heat and Mass Transfer</subject><subject>Hydrogen evolution</subject><subject>In vitro methods and tests</subject><subject>Machines</subject><subject>Magnesium base alloys</subject><subject>Magnetic Materials</subject><subject>Magnetism</subject><subject>Manufacturing</subject><subject>Materials Science</subject><subject>Mechanical properties</subject><subject>Metallic Materials</subject><subject>Mineralization</subject><subject>Nanocomposites</subject><subject>Nanotubes</subject><subject>Processes</subject><subject>Solid Mechanics</subject><subject>Surface properties</subject><subject>Surgical implants</subject><subject>Weight loss</subject><subject>재료공학</subject><issn>1598-9623</issn><issn>2005-4149</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kc9q3DAQxkVJoJs_D9CboKcenMxIltc-brfZZCFtIEkvvQhZlrZKvNJWsgvJS-SVo40DPRUkRvD95ptBHyGfEM4QYH6ekIkSCsA63woL-EBmDEAUJZbNAZmhaOqiqRj_SI5SegCokCObkZe1_2vS4DZqcMHTfIbfhi6DH2Loe9PRb2YTVTepync08y5r9LvzJqrePb83WrpUsc2vH8qHYWwNvTXO2xB1Nln84vgm6LDdheQGQ52nd2479mrI-tfQPdFVP7ruhBxa1Sdz-l6Pyc_Vxf3yqri-uVwvF9eF5gKGomRQNY1ABTVjrWVdVYFmVgsU87qczy00yFrDjK11BkqtaqYtMNaBxq4Ffky-TL4-WvmonQzKvdVNkI9RLm7v15I3QiDyzH6e2F0Mf8b8W_IhjNHn9WRegwueh7JM4UTpGFKKxspddFsVnySC3Gckp4xkzkjuM5L7LdjUkzLrNyb-c_5_0yuzlJR3</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Kumar, A. Madhan</creator><creator>Hassan, S. Fida</creator><creator>Sorour, Ahmad A.</creator><creator>Paramsothy, M.</creator><creator>Gupta, M.</creator><general>The Korean Institute of Metals and Materials</general><general>Springer Nature B.V</general><general>대한금속·재료학회</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>ACYCR</scope></search><sort><creationdate>20190101</creationdate><title>Investigation on the Controlled Degradation and Invitro Mineralization of Carbon Nanotube Reinforced AZ31 Nanocomposite in Simulated Body Fluid</title><author>Kumar, A. Madhan ; Hassan, S. Fida ; Sorour, Ahmad A. ; Paramsothy, M. ; Gupta, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c350t-42069951a0822bf2d660c2fc51578477f0912be2ef8c22b4ca82cf022d0c1db03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Alloying elements</topic><topic>Apatite</topic><topic>Bacterial corrosion</topic><topic>Biocompatibility</topic><topic>Biomedical materials</topic><topic>Body fluids</topic><topic>Carbon nanotubes</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Corrosion rate</topic><topic>Corrosion resistance</topic><topic>Corrosion resistant alloys</topic><topic>Degradation</topic><topic>Engineering Thermodynamics</topic><topic>Heat and Mass Transfer</topic><topic>Hydrogen evolution</topic><topic>In vitro methods and tests</topic><topic>Machines</topic><topic>Magnesium base alloys</topic><topic>Magnetic Materials</topic><topic>Magnetism</topic><topic>Manufacturing</topic><topic>Materials Science</topic><topic>Mechanical properties</topic><topic>Metallic Materials</topic><topic>Mineralization</topic><topic>Nanocomposites</topic><topic>Nanotubes</topic><topic>Processes</topic><topic>Solid Mechanics</topic><topic>Surface properties</topic><topic>Surgical implants</topic><topic>Weight loss</topic><topic>재료공학</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kumar, A. Madhan</creatorcontrib><creatorcontrib>Hassan, S. Fida</creatorcontrib><creatorcontrib>Sorour, Ahmad A.</creatorcontrib><creatorcontrib>Paramsothy, M.</creatorcontrib><creatorcontrib>Gupta, M.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Materials Research Database</collection><collection>ProQuest Materials Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Korean Citation Index</collection><jtitle>Metals and materials international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kumar, A. Madhan</au><au>Hassan, S. Fida</au><au>Sorour, Ahmad A.</au><au>Paramsothy, M.</au><au>Gupta, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Investigation on the Controlled Degradation and Invitro Mineralization of Carbon Nanotube Reinforced AZ31 Nanocomposite in Simulated Body Fluid</atitle><jtitle>Metals and materials international</jtitle><stitle>Met. Mater. Int</stitle><date>2019-01-01</date><risdate>2019</risdate><volume>25</volume><issue>1</issue><spage>105</spage><epage>116</epage><pages>105-116</pages><issn>1598-9623</issn><eissn>2005-4149</eissn><abstract>Magnesium (Mg) based implant materials are believed to be the perfect candidates for biomedical applications due to their versatile properties. However, regulating their corrosion/degradation rate in the biological surroundings is still a noteworthy task. Suitable strategies to overcome this task is to wisely select alloy elements with improved corrosion resistance and mechanical characteristics. An attempt has been made to enhance the corrosion and biocompatibility performance of magnesium alloy AZ31 containing carbon nanotubes (CNTs) as reinforcement and evaluate its degradation and invitro mineralization performance in physiological medium. Corrosion behavior of AZ31 alloy with CNTs reinforcement was investigated using electrochemical methods, weight loss, and hydrogen evolution in SBF during short and long-term periods. The obtained results revealed that the corrosion resistance of AZ31 alloy enhanced significantly due to the incorporation of CNTs. Hydrogen evolution test and weight loss tests revealed that the presence of CNTs improves the stability of the Mg(OH) 2 and efficiently regulate the degradation behavior in SBF. Surface characterization after immersion in SBF revealed the rapid formation of bone-like apatite layer on the surface, validated a good bioactivity of the AZ31 nanocomposite samples.</abstract><cop>Seoul</cop><pub>The Korean Institute of Metals and Materials</pub><doi>10.1007/s12540-018-0161-0</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1598-9623
ispartof Metals and Materials International, 2019, 25(1), , pp.105-116
issn 1598-9623
2005-4149
language eng
recordid cdi_nrf_kci_oai_kci_go_kr_ARTI_3955113
source Springer Nature
subjects Alloying elements
Apatite
Bacterial corrosion
Biocompatibility
Biomedical materials
Body fluids
Carbon nanotubes
Characterization and Evaluation of Materials
Chemistry and Materials Science
Corrosion rate
Corrosion resistance
Corrosion resistant alloys
Degradation
Engineering Thermodynamics
Heat and Mass Transfer
Hydrogen evolution
In vitro methods and tests
Machines
Magnesium base alloys
Magnetic Materials
Magnetism
Manufacturing
Materials Science
Mechanical properties
Metallic Materials
Mineralization
Nanocomposites
Nanotubes
Processes
Solid Mechanics
Surface properties
Surgical implants
Weight loss
재료공학
title Investigation on the Controlled Degradation and Invitro Mineralization of Carbon Nanotube Reinforced AZ31 Nanocomposite in Simulated Body Fluid
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-24T18%3A28%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_nrf_k&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Investigation%20on%20the%20Controlled%20Degradation%20and%20Invitro%20Mineralization%20of%20Carbon%20Nanotube%20Reinforced%20AZ31%20Nanocomposite%20in%20Simulated%20Body%20Fluid&rft.jtitle=Metals%20and%20materials%20international&rft.au=Kumar,%20A.%20Madhan&rft.date=2019-01-01&rft.volume=25&rft.issue=1&rft.spage=105&rft.epage=116&rft.pages=105-116&rft.issn=1598-9623&rft.eissn=2005-4149&rft_id=info:doi/10.1007/s12540-018-0161-0&rft_dat=%3Cproquest_nrf_k%3E2063531572%3C/proquest_nrf_k%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c350t-42069951a0822bf2d660c2fc51578477f0912be2ef8c22b4ca82cf022d0c1db03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2063531572&rft_id=info:pmid/&rfr_iscdi=true