Loading…

Linear and non-linear analyses on the onset of miscible viscous fingering in a porous medium

The onset of miscible viscous fingering in porous media was analyzed theoretically. The linear stability equations were derived in the self-similar domain, and solved through the modal and non-modal analyses. In the non-modal analysis, adjoint equations were derived using the Lagrangian multiplier t...

Full description

Saved in:
Bibliographic Details
Published in:The Korean journal of chemical engineering 2018, 35(7), 220, pp.1423-1432
Main Authors: Ryoo, Won Sun, Kim, Min Chan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c387t-4870292ece131b10176be49faa14e16f956152f02bd97e7b9d8e443da86ccd6d3
cites cdi_FETCH-LOGICAL-c387t-4870292ece131b10176be49faa14e16f956152f02bd97e7b9d8e443da86ccd6d3
container_end_page 1432
container_issue 7
container_start_page 1423
container_title The Korean journal of chemical engineering
container_volume 35
creator Ryoo, Won Sun
Kim, Min Chan
description The onset of miscible viscous fingering in porous media was analyzed theoretically. The linear stability equations were derived in the self-similar domain, and solved through the modal and non-modal analyses. In the non-modal analysis, adjoint equations were derived using the Lagrangian multiplier technique. Through the non-modal analysis, we show that initially the system is unconditionally stable even in the unfavorable viscosity distribution, and there exists the most unstable initial disturbance. To relate the theoretical predictions with the experimental work, nonlinear direct numerical simulations were also conducted. The present stability condition explains the system more reasonably than the previous results based on the conventional quasi-steady state approximation.
doi_str_mv 10.1007/s11814-018-0046-4
format article
fullrecord <record><control><sourceid>proquest_nrf_k</sourceid><recordid>TN_cdi_nrf_kci_oai_kci_go_kr_ARTI_3996451</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2063319212</sourcerecordid><originalsourceid>FETCH-LOGICAL-c387t-4870292ece131b10176be49faa14e16f956152f02bd97e7b9d8e443da86ccd6d3</originalsourceid><addsrcrecordid>eNp1kE9LxDAQxYMouK5-AG8BTx6imTRNmuOy-GdhQZD1JoS0Tdfsts2atMJ-e7tbxZOXeTPDewPzQ-ga6B1QKu8jQAacUMgIpVwQfoImoGRKJGP0FE0oSwUBgPQcXcS4oTRNBaMT9L50rTUBm7bErW9J_Tuaeh9txL7F3YcdJNoO-wo3LhYury3-GhrfR1y5dm3DULBrscE7Hw7bxpauby7RWWXqaK9-dIreHh9W82eyfHlazGdLUiSZ7AjPJGWK2cJCAjlQkCK3XFXGALcgKpUKSFlFWV4qaWWuysxynpQmE0VRijKZotvxbhsqvS2c9sYdde31NujZ62qhE6UET2Hw3ozeXfCfvY2d3vg-DO9GzahIElAM2OCC0VUEH2Owld4F15iw10D1AbgegesBuD4A13zIsDETd-EI5e_y_6FvdlOCTQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2063319212</pqid></control><display><type>article</type><title>Linear and non-linear analyses on the onset of miscible viscous fingering in a porous medium</title><source>Springer Nature</source><creator>Ryoo, Won Sun ; Kim, Min Chan</creator><creatorcontrib>Ryoo, Won Sun ; Kim, Min Chan</creatorcontrib><description>The onset of miscible viscous fingering in porous media was analyzed theoretically. The linear stability equations were derived in the self-similar domain, and solved through the modal and non-modal analyses. In the non-modal analysis, adjoint equations were derived using the Lagrangian multiplier technique. Through the non-modal analysis, we show that initially the system is unconditionally stable even in the unfavorable viscosity distribution, and there exists the most unstable initial disturbance. To relate the theoretical predictions with the experimental work, nonlinear direct numerical simulations were also conducted. The present stability condition explains the system more reasonably than the previous results based on the conventional quasi-steady state approximation.</description><identifier>ISSN: 0256-1115</identifier><identifier>EISSN: 1975-7220</identifier><identifier>DOI: 10.1007/s11814-018-0046-4</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Biotechnology ; Catalysis ; Chemistry ; Chemistry and Materials Science ; Computer simulation ; Industrial Chemistry/Chemical Engineering ; Materials Science ; Mathematical analysis ; Miscibility ; Modal analysis ; Nonlinear analysis ; Porous media ; Self-similarity ; Stability analysis ; Transport Phenomena ; 화학공학</subject><ispartof>Korean Journal of Chemical Engineering, 2018, 35(7), 220, pp.1423-1432</ispartof><rights>Korean Institute of Chemical Engineers, Seoul, Korea 2018</rights><rights>Copyright Springer Science &amp; Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c387t-4870292ece131b10176be49faa14e16f956152f02bd97e7b9d8e443da86ccd6d3</citedby><cites>FETCH-LOGICAL-c387t-4870292ece131b10176be49faa14e16f956152f02bd97e7b9d8e443da86ccd6d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002355369$$DAccess content in National Research Foundation of Korea (NRF)$$Hfree_for_read</backlink></links><search><creatorcontrib>Ryoo, Won Sun</creatorcontrib><creatorcontrib>Kim, Min Chan</creatorcontrib><title>Linear and non-linear analyses on the onset of miscible viscous fingering in a porous medium</title><title>The Korean journal of chemical engineering</title><addtitle>Korean J. Chem. Eng</addtitle><description>The onset of miscible viscous fingering in porous media was analyzed theoretically. The linear stability equations were derived in the self-similar domain, and solved through the modal and non-modal analyses. In the non-modal analysis, adjoint equations were derived using the Lagrangian multiplier technique. Through the non-modal analysis, we show that initially the system is unconditionally stable even in the unfavorable viscosity distribution, and there exists the most unstable initial disturbance. To relate the theoretical predictions with the experimental work, nonlinear direct numerical simulations were also conducted. The present stability condition explains the system more reasonably than the previous results based on the conventional quasi-steady state approximation.</description><subject>Biotechnology</subject><subject>Catalysis</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Computer simulation</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Materials Science</subject><subject>Mathematical analysis</subject><subject>Miscibility</subject><subject>Modal analysis</subject><subject>Nonlinear analysis</subject><subject>Porous media</subject><subject>Self-similarity</subject><subject>Stability analysis</subject><subject>Transport Phenomena</subject><subject>화학공학</subject><issn>0256-1115</issn><issn>1975-7220</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kE9LxDAQxYMouK5-AG8BTx6imTRNmuOy-GdhQZD1JoS0Tdfsts2atMJ-e7tbxZOXeTPDewPzQ-ga6B1QKu8jQAacUMgIpVwQfoImoGRKJGP0FE0oSwUBgPQcXcS4oTRNBaMT9L50rTUBm7bErW9J_Tuaeh9txL7F3YcdJNoO-wo3LhYury3-GhrfR1y5dm3DULBrscE7Hw7bxpauby7RWWXqaK9-dIreHh9W82eyfHlazGdLUiSZ7AjPJGWK2cJCAjlQkCK3XFXGALcgKpUKSFlFWV4qaWWuysxynpQmE0VRijKZotvxbhsqvS2c9sYdde31NujZ62qhE6UET2Hw3ozeXfCfvY2d3vg-DO9GzahIElAM2OCC0VUEH2Owld4F15iw10D1AbgegesBuD4A13zIsDETd-EI5e_y_6FvdlOCTQ</recordid><startdate>20180701</startdate><enddate>20180701</enddate><creator>Ryoo, Won Sun</creator><creator>Kim, Min Chan</creator><general>Springer US</general><general>Springer Nature B.V</general><general>한국화학공학회</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ACYCR</scope></search><sort><creationdate>20180701</creationdate><title>Linear and non-linear analyses on the onset of miscible viscous fingering in a porous medium</title><author>Ryoo, Won Sun ; Kim, Min Chan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c387t-4870292ece131b10176be49faa14e16f956152f02bd97e7b9d8e443da86ccd6d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Biotechnology</topic><topic>Catalysis</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Computer simulation</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Materials Science</topic><topic>Mathematical analysis</topic><topic>Miscibility</topic><topic>Modal analysis</topic><topic>Nonlinear analysis</topic><topic>Porous media</topic><topic>Self-similarity</topic><topic>Stability analysis</topic><topic>Transport Phenomena</topic><topic>화학공학</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ryoo, Won Sun</creatorcontrib><creatorcontrib>Kim, Min Chan</creatorcontrib><collection>CrossRef</collection><collection>Korean Citation Index</collection><jtitle>The Korean journal of chemical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ryoo, Won Sun</au><au>Kim, Min Chan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Linear and non-linear analyses on the onset of miscible viscous fingering in a porous medium</atitle><jtitle>The Korean journal of chemical engineering</jtitle><stitle>Korean J. Chem. Eng</stitle><date>2018-07-01</date><risdate>2018</risdate><volume>35</volume><issue>7</issue><spage>1423</spage><epage>1432</epage><pages>1423-1432</pages><issn>0256-1115</issn><eissn>1975-7220</eissn><abstract>The onset of miscible viscous fingering in porous media was analyzed theoretically. The linear stability equations were derived in the self-similar domain, and solved through the modal and non-modal analyses. In the non-modal analysis, adjoint equations were derived using the Lagrangian multiplier technique. Through the non-modal analysis, we show that initially the system is unconditionally stable even in the unfavorable viscosity distribution, and there exists the most unstable initial disturbance. To relate the theoretical predictions with the experimental work, nonlinear direct numerical simulations were also conducted. The present stability condition explains the system more reasonably than the previous results based on the conventional quasi-steady state approximation.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11814-018-0046-4</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0256-1115
ispartof Korean Journal of Chemical Engineering, 2018, 35(7), 220, pp.1423-1432
issn 0256-1115
1975-7220
language eng
recordid cdi_nrf_kci_oai_kci_go_kr_ARTI_3996451
source Springer Nature
subjects Biotechnology
Catalysis
Chemistry
Chemistry and Materials Science
Computer simulation
Industrial Chemistry/Chemical Engineering
Materials Science
Mathematical analysis
Miscibility
Modal analysis
Nonlinear analysis
Porous media
Self-similarity
Stability analysis
Transport Phenomena
화학공학
title Linear and non-linear analyses on the onset of miscible viscous fingering in a porous medium
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T09%3A55%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_nrf_k&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Linear%20and%20non-linear%20analyses%20on%20the%20onset%20of%20miscible%20viscous%20fingering%20in%20a%20porous%20medium&rft.jtitle=The%20Korean%20journal%20of%20chemical%20engineering&rft.au=Ryoo,%20Won%20Sun&rft.date=2018-07-01&rft.volume=35&rft.issue=7&rft.spage=1423&rft.epage=1432&rft.pages=1423-1432&rft.issn=0256-1115&rft.eissn=1975-7220&rft_id=info:doi/10.1007/s11814-018-0046-4&rft_dat=%3Cproquest_nrf_k%3E2063319212%3C/proquest_nrf_k%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c387t-4870292ece131b10176be49faa14e16f956152f02bd97e7b9d8e443da86ccd6d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2063319212&rft_id=info:pmid/&rfr_iscdi=true