Loading…
Linear and non-linear analyses on the onset of miscible viscous fingering in a porous medium
The onset of miscible viscous fingering in porous media was analyzed theoretically. The linear stability equations were derived in the self-similar domain, and solved through the modal and non-modal analyses. In the non-modal analysis, adjoint equations were derived using the Lagrangian multiplier t...
Saved in:
Published in: | The Korean journal of chemical engineering 2018, 35(7), 220, pp.1423-1432 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c387t-4870292ece131b10176be49faa14e16f956152f02bd97e7b9d8e443da86ccd6d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c387t-4870292ece131b10176be49faa14e16f956152f02bd97e7b9d8e443da86ccd6d3 |
container_end_page | 1432 |
container_issue | 7 |
container_start_page | 1423 |
container_title | The Korean journal of chemical engineering |
container_volume | 35 |
creator | Ryoo, Won Sun Kim, Min Chan |
description | The onset of miscible viscous fingering in porous media was analyzed theoretically. The linear stability equations were derived in the self-similar domain, and solved through the modal and non-modal analyses. In the non-modal analysis, adjoint equations were derived using the Lagrangian multiplier technique. Through the non-modal analysis, we show that initially the system is unconditionally stable even in the unfavorable viscosity distribution, and there exists the most unstable initial disturbance. To relate the theoretical predictions with the experimental work, nonlinear direct numerical simulations were also conducted. The present stability condition explains the system more reasonably than the previous results based on the conventional quasi-steady state approximation. |
doi_str_mv | 10.1007/s11814-018-0046-4 |
format | article |
fullrecord | <record><control><sourceid>proquest_nrf_k</sourceid><recordid>TN_cdi_nrf_kci_oai_kci_go_kr_ARTI_3996451</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2063319212</sourcerecordid><originalsourceid>FETCH-LOGICAL-c387t-4870292ece131b10176be49faa14e16f956152f02bd97e7b9d8e443da86ccd6d3</originalsourceid><addsrcrecordid>eNp1kE9LxDAQxYMouK5-AG8BTx6imTRNmuOy-GdhQZD1JoS0Tdfsts2atMJ-e7tbxZOXeTPDewPzQ-ga6B1QKu8jQAacUMgIpVwQfoImoGRKJGP0FE0oSwUBgPQcXcS4oTRNBaMT9L50rTUBm7bErW9J_Tuaeh9txL7F3YcdJNoO-wo3LhYury3-GhrfR1y5dm3DULBrscE7Hw7bxpauby7RWWXqaK9-dIreHh9W82eyfHlazGdLUiSZ7AjPJGWK2cJCAjlQkCK3XFXGALcgKpUKSFlFWV4qaWWuysxynpQmE0VRijKZotvxbhsqvS2c9sYdde31NujZ62qhE6UET2Hw3ozeXfCfvY2d3vg-DO9GzahIElAM2OCC0VUEH2Owld4F15iw10D1AbgegesBuD4A13zIsDETd-EI5e_y_6FvdlOCTQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2063319212</pqid></control><display><type>article</type><title>Linear and non-linear analyses on the onset of miscible viscous fingering in a porous medium</title><source>Springer Nature</source><creator>Ryoo, Won Sun ; Kim, Min Chan</creator><creatorcontrib>Ryoo, Won Sun ; Kim, Min Chan</creatorcontrib><description>The onset of miscible viscous fingering in porous media was analyzed theoretically. The linear stability equations were derived in the self-similar domain, and solved through the modal and non-modal analyses. In the non-modal analysis, adjoint equations were derived using the Lagrangian multiplier technique. Through the non-modal analysis, we show that initially the system is unconditionally stable even in the unfavorable viscosity distribution, and there exists the most unstable initial disturbance. To relate the theoretical predictions with the experimental work, nonlinear direct numerical simulations were also conducted. The present stability condition explains the system more reasonably than the previous results based on the conventional quasi-steady state approximation.</description><identifier>ISSN: 0256-1115</identifier><identifier>EISSN: 1975-7220</identifier><identifier>DOI: 10.1007/s11814-018-0046-4</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Biotechnology ; Catalysis ; Chemistry ; Chemistry and Materials Science ; Computer simulation ; Industrial Chemistry/Chemical Engineering ; Materials Science ; Mathematical analysis ; Miscibility ; Modal analysis ; Nonlinear analysis ; Porous media ; Self-similarity ; Stability analysis ; Transport Phenomena ; 화학공학</subject><ispartof>Korean Journal of Chemical Engineering, 2018, 35(7), 220, pp.1423-1432</ispartof><rights>Korean Institute of Chemical Engineers, Seoul, Korea 2018</rights><rights>Copyright Springer Science & Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c387t-4870292ece131b10176be49faa14e16f956152f02bd97e7b9d8e443da86ccd6d3</citedby><cites>FETCH-LOGICAL-c387t-4870292ece131b10176be49faa14e16f956152f02bd97e7b9d8e443da86ccd6d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002355369$$DAccess content in National Research Foundation of Korea (NRF)$$Hfree_for_read</backlink></links><search><creatorcontrib>Ryoo, Won Sun</creatorcontrib><creatorcontrib>Kim, Min Chan</creatorcontrib><title>Linear and non-linear analyses on the onset of miscible viscous fingering in a porous medium</title><title>The Korean journal of chemical engineering</title><addtitle>Korean J. Chem. Eng</addtitle><description>The onset of miscible viscous fingering in porous media was analyzed theoretically. The linear stability equations were derived in the self-similar domain, and solved through the modal and non-modal analyses. In the non-modal analysis, adjoint equations were derived using the Lagrangian multiplier technique. Through the non-modal analysis, we show that initially the system is unconditionally stable even in the unfavorable viscosity distribution, and there exists the most unstable initial disturbance. To relate the theoretical predictions with the experimental work, nonlinear direct numerical simulations were also conducted. The present stability condition explains the system more reasonably than the previous results based on the conventional quasi-steady state approximation.</description><subject>Biotechnology</subject><subject>Catalysis</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Computer simulation</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Materials Science</subject><subject>Mathematical analysis</subject><subject>Miscibility</subject><subject>Modal analysis</subject><subject>Nonlinear analysis</subject><subject>Porous media</subject><subject>Self-similarity</subject><subject>Stability analysis</subject><subject>Transport Phenomena</subject><subject>화학공학</subject><issn>0256-1115</issn><issn>1975-7220</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kE9LxDAQxYMouK5-AG8BTx6imTRNmuOy-GdhQZD1JoS0Tdfsts2atMJ-e7tbxZOXeTPDewPzQ-ga6B1QKu8jQAacUMgIpVwQfoImoGRKJGP0FE0oSwUBgPQcXcS4oTRNBaMT9L50rTUBm7bErW9J_Tuaeh9txL7F3YcdJNoO-wo3LhYury3-GhrfR1y5dm3DULBrscE7Hw7bxpauby7RWWXqaK9-dIreHh9W82eyfHlazGdLUiSZ7AjPJGWK2cJCAjlQkCK3XFXGALcgKpUKSFlFWV4qaWWuysxynpQmE0VRijKZotvxbhsqvS2c9sYdde31NujZ62qhE6UET2Hw3ozeXfCfvY2d3vg-DO9GzahIElAM2OCC0VUEH2Owld4F15iw10D1AbgegesBuD4A13zIsDETd-EI5e_y_6FvdlOCTQ</recordid><startdate>20180701</startdate><enddate>20180701</enddate><creator>Ryoo, Won Sun</creator><creator>Kim, Min Chan</creator><general>Springer US</general><general>Springer Nature B.V</general><general>한국화학공학회</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ACYCR</scope></search><sort><creationdate>20180701</creationdate><title>Linear and non-linear analyses on the onset of miscible viscous fingering in a porous medium</title><author>Ryoo, Won Sun ; Kim, Min Chan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c387t-4870292ece131b10176be49faa14e16f956152f02bd97e7b9d8e443da86ccd6d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Biotechnology</topic><topic>Catalysis</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Computer simulation</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Materials Science</topic><topic>Mathematical analysis</topic><topic>Miscibility</topic><topic>Modal analysis</topic><topic>Nonlinear analysis</topic><topic>Porous media</topic><topic>Self-similarity</topic><topic>Stability analysis</topic><topic>Transport Phenomena</topic><topic>화학공학</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ryoo, Won Sun</creatorcontrib><creatorcontrib>Kim, Min Chan</creatorcontrib><collection>CrossRef</collection><collection>Korean Citation Index</collection><jtitle>The Korean journal of chemical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ryoo, Won Sun</au><au>Kim, Min Chan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Linear and non-linear analyses on the onset of miscible viscous fingering in a porous medium</atitle><jtitle>The Korean journal of chemical engineering</jtitle><stitle>Korean J. Chem. Eng</stitle><date>2018-07-01</date><risdate>2018</risdate><volume>35</volume><issue>7</issue><spage>1423</spage><epage>1432</epage><pages>1423-1432</pages><issn>0256-1115</issn><eissn>1975-7220</eissn><abstract>The onset of miscible viscous fingering in porous media was analyzed theoretically. The linear stability equations were derived in the self-similar domain, and solved through the modal and non-modal analyses. In the non-modal analysis, adjoint equations were derived using the Lagrangian multiplier technique. Through the non-modal analysis, we show that initially the system is unconditionally stable even in the unfavorable viscosity distribution, and there exists the most unstable initial disturbance. To relate the theoretical predictions with the experimental work, nonlinear direct numerical simulations were also conducted. The present stability condition explains the system more reasonably than the previous results based on the conventional quasi-steady state approximation.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11814-018-0046-4</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0256-1115 |
ispartof | Korean Journal of Chemical Engineering, 2018, 35(7), 220, pp.1423-1432 |
issn | 0256-1115 1975-7220 |
language | eng |
recordid | cdi_nrf_kci_oai_kci_go_kr_ARTI_3996451 |
source | Springer Nature |
subjects | Biotechnology Catalysis Chemistry Chemistry and Materials Science Computer simulation Industrial Chemistry/Chemical Engineering Materials Science Mathematical analysis Miscibility Modal analysis Nonlinear analysis Porous media Self-similarity Stability analysis Transport Phenomena 화학공학 |
title | Linear and non-linear analyses on the onset of miscible viscous fingering in a porous medium |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T09%3A55%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_nrf_k&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Linear%20and%20non-linear%20analyses%20on%20the%20onset%20of%20miscible%20viscous%20fingering%20in%20a%20porous%20medium&rft.jtitle=The%20Korean%20journal%20of%20chemical%20engineering&rft.au=Ryoo,%20Won%20Sun&rft.date=2018-07-01&rft.volume=35&rft.issue=7&rft.spage=1423&rft.epage=1432&rft.pages=1423-1432&rft.issn=0256-1115&rft.eissn=1975-7220&rft_id=info:doi/10.1007/s11814-018-0046-4&rft_dat=%3Cproquest_nrf_k%3E2063319212%3C/proquest_nrf_k%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c387t-4870292ece131b10176be49faa14e16f956152f02bd97e7b9d8e443da86ccd6d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2063319212&rft_id=info:pmid/&rfr_iscdi=true |