Loading…
A New Concept of a Porous Carbon Interlayer Impregnated with Sulfur for Long‐Life and High‐Energy LiS Batteries
We present a new interlayer concept for the realization of high‐energy‐density LiS batteries. Disordered mesoporous carbons replicated by silica nanoparticles were partially filled with sulfur via a melt‐diffusion method. Sulfur‐impregnated disordered mesoporous carbon (DMC‐S) composites were used...
Saved in:
Published in: | Bulletin of the Korean Chemical Society 2019, 40(1), , pp.24-28 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We present a new interlayer concept for the realization of high‐energy‐density LiS batteries. Disordered mesoporous carbons replicated by silica nanoparticles were partially filled with sulfur via a melt‐diffusion method. Sulfur‐impregnated disordered mesoporous carbon (DMC‐S) composites were used as an interlayer between a cathode and anode to provide additional active materials for a LiS cell. The LiS cell with the DMC‐S interlayer exhibited an approximately two‐fold increase in areal capacity compared with the control cell without an interlayer. DMC‐S composites offer the unique advantage of acting as a porous framework to accommodate active materials and suppress polysulfide diffusion. We propose that this new approach provides a viable path for the development of LiS batteries with a high‐energy density and excellent cycling stability. |
---|---|
ISSN: | 1229-5949 0253-2964 1229-5949 |
DOI: | 10.1002/bkcs.11633 |