Loading…
Large Tuning of Surface Plasmon Resonance of Au–Fullerene Nanocomposite
Gold–fullerene C 60 nanocomposite thin films prepared by thermal co-deposition were irradiated by a high energy beam of 120 MeV Ag ions using Pelletron accelerator. Absorption spectra revealed a large and progressive tuning of surface plasmon resonance wavelength when the films were irradiated at hi...
Saved in:
Published in: | Electronic materials letters 2019, 15(1), , pp.111-118 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Gold–fullerene C
60
nanocomposite thin films prepared by thermal co-deposition were irradiated by a high energy beam of 120 MeV Ag ions using Pelletron accelerator. Absorption spectra revealed a large and progressive tuning of surface plasmon resonance wavelength when the films were irradiated at higher fluences. This blue shift (~ 119 nm) can be ascribed to the evolution of fullerene into amorphous carbon upon bombardment of high energy ions at higher fluences and causes a shift in refractive index of the matrix. Raman spectra ascertained this transformation with the presence of two bands: D and G band. Ion irradiation also leads to the formation of bigger size Au nanoparticles with well defined spherical shape at higher fluences as confirmed by TEM. XRD results demonstrated decrease in FWHM of diffraction peaks indicating the increase in particle size which is in agreement with the result obtained from TEM analysis.
Graphical Abstract |
---|---|
ISSN: | 1738-8090 2093-6788 |
DOI: | 10.1007/s13391-018-0099-x |