Loading…

Electro-deposited Nanoporous Platinum Electrode for EEG Monitoring

One of the key issues in electroencephalogram (EEG) monitoring is accurate signal acquisition with less cumbersome electrodes. In this study, the L2 phase electro-deposited nanoporous platinum (L2-ePt) electrode is introduced, which is a new type of electrode that utilizes a stable nanoporous platin...

Full description

Saved in:
Bibliographic Details
Published in:Journal of Korean medical science 2018, 33(21), , pp.1-13
Main Authors: Kim, Do Youn, Ku, Yunseo, Ahn, Joong Woo, Kwon, Chiheon, Kim, Hee Chan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:One of the key issues in electroencephalogram (EEG) monitoring is accurate signal acquisition with less cumbersome electrodes. In this study, the L2 phase electro-deposited nanoporous platinum (L2-ePt) electrode is introduced, which is a new type of electrode that utilizes a stable nanoporous platinum surface to reduce the skin-electrode impedance. L2-ePt electrodes were fabricated using electro-deposition technique. Then, the effect of the nanoporous surface on the surface roughness and the electrode impedance were observed from the L2-ePt electrodes and the flat platinum (FlatPt) electrode. The skin-electrode impedances of the L2-ePt electrodes, a gold cup electrode, and the FlatPt electrode were evaluated when placed on the hairy occipital area of the head in ten subjects. For the validation of using the L2-ePt electrode, a correlational analysis of the alpha rhythms was performed in the same subjects for simultaneous EEG recordings using the L2-ePt and clinically-used EEG electrodes. The results indicated that the L2-ePt electrode with a roughness factor of 200 had the lowest mean impedance performance. Moreover, the proposed L2-ePt electrode showed a significantly lower mean skin-electrode impedance than the FlatPt electrode. Finally, the EEG signal quality recorded by the L2-ePt electrode ( = 0.94) was comparable to that of the clinically-used gold cup electrode. Based on these results, the proposed L2-ePt electrode is suitable for use in various high-quality EEG applications.
ISSN:1011-8934
1598-6357
DOI:10.3346/jkms.2018.33.e154